1 / 65

Modeling and Understanding of Blazar Sources

Modeling and Understanding of Blazar Sources. Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera With the help of: G. Bonnoli, A. Celotti, L. Foschini, G. Ghirlanda, L. Maraschi, F. Tavecchio. Fermi blazars. 3 months, 10 s. 3 months, 10 s. 3 months, 10 s.

brilliant
Download Presentation

Modeling and Understanding of Blazar Sources

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modeling and Understanding of Blazar Sources Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera With the help of: G. Bonnoli, A. Celotti, L. Foschini, G. Ghirlanda, L. Maraschi, F. Tavecchio

  2. Fermi blazars

  3. 3 months, 10 s

  4. 3 months, 10 s

  5. 3 months, 10 s

  6. 3 months, 10 s

  7. 3 months, 10 s Fossati et al. 1998; Donato et al. 2001

  8. 0.8 Fg=k Fr P~10-17 20 GHz southern sources with F>40mJy: 3600 radio flat sources, 230 associations with Fermi blazars Ghirlanda+ 2010

  9. Only 1/15 of the radio sources are detected by LAT 0.8 Fg=k Fr Ghirlanda+ 2011

  10. Assume a slope and a dispersion (g-variability) 1.3-1.5 1 Fg=k Fr 2 3:number Ghirlanda+ 2011

  11. 3 months, 10 s FSRQs Steep Lg Fossati et al. 1998; Donato et al. 2001 BL Lacs Flat

  12. 11 months – 4s Abdo+ 2010 FSRQs BL Lacs

  13. 11 months – 4s Abdo+ 2010 Intruder BL Lacs?

  14. LMgII=1.75x1044 erg/s EW=5A Scarpa & Falomo 1997 11 months – 4s 0208-512

  15. When a BL Lac is a BL Lac? • Usually, EW< 5A • Easy, but not physical • Better to measure LBLR • But normalize it to LEdd

  16. ~5x10-4 GG+ 2011

  17. SDSS+1LAC Sbarrato+ in prep Do we really need to divide blazars?

  18. TeVblazars

  19. 107 sources: 46extragal + 61 gal http://www.mpp.mpg.de/~rwagner/sources/

  20. http://www.mpp.mpg.de/~rwagner/sources/

  21. Also FSRQs ! http://www.mpp.mpg.de/~rwagner/sources/

  22. Also Radio-galaxies ! http://www.mpp.mpg.de/~rwagner/sources/

  23. Also starbursts galaxies! http://www.mpp.mpg.de/~rwagner/sources/

  24. PKS 2155-304 ~15 Crab tvar~ 3-5 min !<< RS/c Crab level Aharonian et al. 2007

  25. Blob Rs Rs Rs Rs R~d/G Internal shocks RS 1/G 2G G tvar~d/G2 d ~ 102-103 RS ~ G2 RS d=~G2RS tvar ~ 104M9 seconds (3 h)

  26. G

  27. G2 G1

  28. Jet in a jet G

  29. Needle (rifle) G

  30. GG+2009: needle Giannios +2009: jet in a jet by reconnection

  31. GG+2009 Giannios+2009 For 2155-304: No strong disk, no severe cooling, e- can reach high energies

  32. 1222+216 z=0.432: a FSRQ! 10 min Aleksic+ 2011 – MAGIC

  33. Tavecchio+ 2011

  34. GG+2009 Giannios+2009 For 1222+216: Strong disk, severe cooling, e- cannot reach high energies. Plenty of external seeds, no need to be inside the “normal” emitting region

  35. GG+2009 Giannios+2009

  36. Cosmic B-background

  37. TeV no GeV Tavecchio+ 2010

  38. blazar

  39. LHC Reprocessed GeV  intergalactic B

  40. A simplified view: see Neronov+ 2010; Tavecchio+ 2010 With no B-field ~10 GeV IC with CMB e+e- e+e- ~10 TeV e+e- tgg~1 with IR bkg

  41. Neronov+ 2010 – Tavecchio+ 2010 With no B-field ~10 GeV IC with CMB ~10 TeV tgg~1 with IR bkg

  42. Neronov+ 2010 – Tavecchio+ 2010 With B-field

  43. Big blazars

  44. Within RBLR UBLR= const Within RTorusUIR= const Big blazars RTorus Torus ~1-10 pc G RBLR disk Broad Line Region ~0.2 pc Poutanen

  45. ~VLBI region ~20 pc away (Marscher+) Lyutikov G RTorus Torus ~1-10 pc RBLR disk Broad Line Region ~0.2 pc

  46. Fermi EC M=2x109 synchro UVOT XRT GG, Tavecchio & Ghirlanda 2009 torus X-ray corona disk SSC Low energy synchro peak: leave the disk naked!

  47. Blazars also present in SDSS (DR7) FWHM + estimate of RBLR

  48. jet power and accretion luminosity G Pr = radiation ~ Lobs/G2 Pe = relat. electrons Pp = protons PB = B-field R Pjet = Pe+Pp+PB ~1017 cm Shakura-Sunjaev disk: Ld

  49. Pr ~ Lobs/G2 ”model independent” Pr=Ld Pr is the absolute minimum of Pjet

  50. Pr ~Ld Pr ~ Mc2 Ld ~ M2c2 1/2 Pr ~Ld

More Related