1 / 51

Susanna Guatelli & Barbara Mascialino

Precision Validation of Geant4 Electromagnetic Physics. Susanna Guatelli & Barbara Mascialino. G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova) , S. Guatelli (INFN Genova) , M. Maire (LAPP) , A. Mantero (ESA) , B. Mascialino (INFN Genova) ,

Download Presentation

Susanna Guatelli & Barbara Mascialino

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Precision Validation of Geant4 Electromagnetic Physics Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone(INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova) , M. Maire(LAPP), A. Mantero (ESA) , B. Mascialino (INFN Genova), P. Nieminen (ESA), L. Pandola(INFN LNGS), S. Parlati(INFN LNGS) , A. Pfeiffer (CERN), M.G. Pia (INFN Genova), L. Urban(Budapest) 1st Workshop on Italy-Japan Collaboration on Geant4 Medical Application

  2. multiple scattering Bremsstrahlung ionisation annihilation photoelectric effect Compton scattering Rayleigh effect gamma conversion e+e- pair production synchrotron radiation transition radiation Cherenkov refraction reflection absorption scintillation fluorescence Auger Standard Package LowEnergy Package Geant4 e.m. package Muon Package Optical photon Package Electromagnetic Physics • It handles • electrons and positrons • gamma, X-ray and optical photons • muons • charged hadrons • ions

  3. E.M. Physics Validation • Validation is fundamental in Geant4 • Validations at different levels • Comparisons to experimental measurements and recognised standard references • Unit, integration, system testing • Microscopic physics validation • Macroscopic validation experimental use cases

  4. Microscopic Validation • Validation of Geant4 electromagnetic physics models • Attenuation coefficients, CSDA ranges, Stopping Power, distributions of physics quantities • Quantitative comparisons to experimental data and recognised standard references

  5. Photon Mass Attenuation Coefficient 2N-L=13.1 – =20 - p=0.87 2N-S=23.2 – =15 - p=0.08 Transmitted photons (I) NIST Photon beam (Io) G4Standard • G4 LowE x-ray attenuation coeff in U NIST data Penelope c2=19.3 n=22 p=0.63 Absorber Materials: Be, Al, Si, Ge, Fe, Cs, Au, Pb, U

  6. 2N-L=13.1 – =20 - p=0.87 2N-S=23.2 – =15 - p=0.08 NIST-XCOM G4 Standard G4 LowE X-ray Attenuation Coefficient - Al

  7. NIST-XCOM G4 LowE Penelope X-ray Attenuation Coefficient - Al 2N-P=15.9 – =19 p=0.66

  8. 2N-L=26.3 – =23 - p=0.29 2N-S=27.9 – =23 - p=0.22 NIST-XCOM G4 Standard G4 LowE X-ray Attenuation Coefficient - Ge

  9. NIST-XCOM G4 LowE Penelope X-ray Attenuation Coefficient - Ge 2N-P=10.1 – =21 - p=0.98

  10. 2N-L=6.6 – =20 - p=0.99 2N-S=14.7 – =20 - p=0.80 NIST-XCOM G4 Standard G4 LowE X-ray Attenuation Coefficient - U

  11. NIST-XCOM G4 LowE Penelope X-ray Attenuation Coefficient - U 2N-P=19.3 – =22 - p=0.63

  12. Compton Scattering - Al 2N-L= 12.9– =8 - p=0.12 2N-S=8.7 – =6 - p=0.19 NIST-XCOM G4 Standard G4 LowE

  13. Compton Scattering - Al NIST-XCOM G4 LowE Penelope 2N-P=2.5 – =6 - p=0.87

  14. Compton Scattering - Cs 2N-L=4.6 – =8 - p=0.80 2N-S=1.8 – =8 - p=0.99 NIST-XCOM G4 Standard G4 LowE

  15. Compton Scattering - Cs NIST-XCOM G4 LowE Penelope 2N-P=4.6 – =8 - p=0.80

  16. NIST-XCOM G4 LowE Rayleigh Scattering - Al 2N-L=13.6 – =11 - p=0.26

  17. NIST-XCOM G4 LowE Penelope Rayleigh Scattering - Al 2N-P=7.2 – =8 - p=0.52

  18. NIST-XCOM G4 LowE Rayleigh Scattering - Cs

  19. NIST-XCOM G4 LowE Penelope Rayleigh Scattering - Cs

  20. Photoelectric Effect - Fe NIST-XCOM G4 Standard G4 LowE

  21. NIST-XCOM G4 LowE Penelope Photoelectric Effect - Fe

  22. NIST-XCOM G4 Standard G4 LowE Pair Production - Si

  23. NIST-XCOM G4 LowE Penelope Pair Production - Si

  24. Electrons - Stopping Power and CSDA Range 2N-S=0.267 =28 p=1 2N-L=1.315=28 p=1 G4 Standard G4 LowE-EPDL NIST Absorber Materials: Be, Al, Si, Ge, Fe, Cs, Au, Pb, U G4 Standard G4 LowE-EPDL NIST CSDA range: particle range without energy loss fluctuations and multiple scattering Experimental set-up centre

  25. NIST-ESTAR G4 Standard G4 LowE Electrons - CSDA Range - Al

  26. NIST-ESTAR G4 Standard G4 LowE Electrons - CSDA Range - Pb

  27. NIST-ESTAR G4 Standard G4 LowE Electrons - Stopping Power - Al

  28. NIST-ESTAR G4 Standard G4 LowE Electrons - Stopping Power - Pb

  29. NIST-ESTAR Geant4-05-00 Geant4-05-02 Electrons - CSDA Range – Al –G4LowE Regression testing

  30. NIST-ESTAR Geant4-05-00 Geant4-05-02 Electrons - CSDA Range – Pb –G4Standard Regression testing

  31. NIST-PSTAR G4 Standard G4 LowE Protons - CSDA Range Al

  32. NIST-PSTAR G4 Standard G4 LowE Protons - CSDA Range Pb

  33. NIST-PSTAR G4 Standard G4 LowE Ziegler Protons - Stopping Power Al

  34. NIST-PSTAR G4 Standard G4 LowE Protons - Stopping Power - Pb

  35. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Al – G4LowE Regression testing

  36. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Al – G4LowE Ziegler Regression testing

  37. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Al – G4Standard Regression testing

  38. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Pb – G4LowE Regression testing

  39. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Pb – G4LowE Ziegler Regression testing

  40. NIST-PSTAR Geant4-05-00 Geant4-05-02 Protons - CSDA Range – Pb –G4Standard Regression testing

  41. Electrons Transmission Tests Experimental set-up e- beam

  42. Electrons Backscattering Coefficient – E=100keV Lockwood et al. (1981) G4 LowE Backscattered e- Experimental set-up Incident e- beam Angle of incidence (with respect to the normal to the sample surface) = 0°

  43. Electrons Backscattering Coefficient – E=1MeV Lockwood et al. (1981) G4 LowE Angle of incidence (with respect to the normal to the sample surface)=0°

  44. Coleman (1992) G4 LowE Positrons - Backscattering coefficient – 30keV

  45. NIST-PSTAR G4 Standard G4 LowE Positrons - Backscattering coefficient – 30keV Regression testing

  46. Auger Effect, X-Ray Fluorescence Iceland Basalt Fluorescence Spectrum Auger Spectrum in Cu Counts Energy (keV) Anderson-Darling Test Ac (95%) =0.752 Detector response Simulation of Auger emission from pure materials irradiated by an electron beam with continuous spectrum

  47. protons antiprotons proton straggling Much more available or in progress… ions Barkas Effect

  48. ATLAS CMS Dark matter and n experiments Macroscopic Validation • Experimental set-up validation • Collaboration of Geant4 developers and research groups of different experiments Medical Physics Space science

  49. The Problem of Validation: Finding Reliable Data… Note: Geant4 validation is not always easy experimental data often exhibit large differences! Backscattering low energies - Au

  50. Conclusions • Geant4 electromagnetic package encompasses an ample set of physics models, specialised for particle type, energy range and detector applications Geant4 Physics Reference Manual (www.cern.ch/geant4) • Geant4 e.m. physics is subject to a rigorous testing and validation process • Many detailed results are available for the validation of basic physics distributions (http://www.ge.infn.it/geant4/analysis/test) • Many significant contributions to the validation of Geant4 e.m. physics from test beams and application in the experiments

More Related