1 / 24

Multiple Instance Learning

Multiple Instance Learning. Outline. Motivation Multiple Instance Learning (MIL) Diverse Density Single Point Concept Disjunctive Point Concept SVM Algorithms for MIL Single Instance Learner (SIL) Sparse MIL mi-SVM MI-SVM Results Some Thoughts.

curt
Download Presentation

Multiple Instance Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multiple Instance Learning

  2. Outline • Motivation • Multiple Instance Learning (MIL) • Diverse Density • Single Point Concept • Disjunctive Point Concept • SVM Algorithms for MIL • Single Instance Learner (SIL) • Sparse MIL • mi-SVM • MI-SVM • Results • Some Thoughts

  3. Part I:Multiple Instance Learning (MIL)

  4. Motivation • It is not always possible to provide labeled data for training • Reasons: • Requires substantial human effort • Requires expensive tests • Disagreement among experts • Labeling is not possible at instance level • Objective: present a learning algorithm that can learn from ambiguously labeled training data

  5. Multiple Instance Learning (MIL) • In MIL, instead of giving the learner labels for the individual examples, the trainer only labels collections of examples, which are called bags. • A bag is labeled positive if there is at least one positive example in it • It is labeled negative if all the examples in it are negative Negative Bags (Bi-) Positive Bags (Bi+)

  6. Multiple Instance Learning (MIL) • The key challenge with MIL is coping with the ambiguity of not knowing which examples in the positive bag are actually positive and which are not • MIL model was first formalized by Dietterich et al. to deal with the drug activity prediction problem • Following that, an algorithm called Diverse Density was developed to provide a solution to MIL • Later, the method was extended to deal real-valued labels instead of binary labels.

  7. Diverse Density • Diversity Density solves MIL problem by examining the distribution of the instances • It looks for a point that is close to instances in different positive bags and that is far from the instances in the negative bags • Such a point represents the concept that we would like to learn • Diversity Density is the measure of the intersection of the positive bags minus the union of the negative bags.

  8. Diversity Density – Molecular Example • Suppose the shape of candidate molecule can be described by a feature vector • If a molecule is labeled positive, then at least one place along the manifold it took the right shape to fit into the target protein

  9. Diversity Density – Molecular Example

  10. Noisy-Or for Estimating the Density • It is assumed that the event can only happen if at least one of the causations occurred • It is also assumed that the probability of any cause failing to trigger the event is independent of any other cause

  11. Diverse Density - Formally • By maximizing the Diverse Density we can find the point of intersection (the desired concept) where Alternatively, one can use most-likely-cause estimator

  12. Single Point Concept • A concept that corresponds to single point in feature space • Every Bi+ has at least one instance that is equal to the true concept corrupted by some Gaussian noise. • Every Bi- has no instances that are equal to the true concept corrupted by some Gaussian noise Where k = number of dimensions in feature space sk = scaling vector

  13. Disjunctive Point Concept • More complicated concepts are disjunction of d-single point concepts • A bag is positive if at least one of its instances is in the concept xt1, xt2 or xtd

  14. Density Surfaces

  15. Part II: SVM Algorithms for MIL

  16. Single Instance Learning MIL • SIL-MIL: Single Instance Learning approach • Applies bag’s label to all instances in the bag • A normal SVM is trained on the resulting dataset

  17. Sparse MIL • All instances from negative bags are real negative instances • Small positive bags are more informative than large positive bags • A bag is represented as the sum of all its instances normalized by its 1 or 2-norm

  18. Results • Datasets used: • AIMed: sparse dataset created from a corpus of protein-protein interactions. Contains 670 positive and 1,040 negative bags • CBIR: Content Based Image Retrieval domain. The task is to categorize images as to whether they contain an object of interest • MUSK: drug activity dataset. Bags corresponds to molecule, while bag instances correspond to three dimensional conformation of same molecule • TST: text categorization dataset in which MEDLINE articles are represented as bags of overlapping text passages.

  19. Results

  20. mi-SVM • Instance level classification • Treats label instance labels yias unobserved hidden variable • Goal is to maximize the margin over the unknown instance labels • Suitable for instance classification

  21. MI-SVM • Bag level classification • Goal is to maximize the bag margin, which is • The “most positive” instance in case of positive bags • The “least negative” instance in case of negative bags • Suitable for bag classification

  22. Results: mi-SVM vs. MI-SVM Corel image data sets TREC9 document categorization sets

  23. Some Thoughts • Can find multiple positive concepts in a single bag and learn these concepts? • Does varying sizes of negative bags have an influence on the learning algorithm? • Can we re-formulate MIL using Fuzzy Logic?

  24. References • O. Maron and T. Lozano-Pérez, "A framework for multiple-instance learning," 1998, pp. 570-576. • R. C. Bunescu and R. J. Mooney, "Multiple instance learning for sparse positive bags," 2007, pp. 105-112. • J. Yang, "Review of Multi-Instance Learning and Its applications," 2008. • S. Andrews, et al., "Support vector machines for multiple-instance learning," Advances in neural information processing systems, pp. 577-584, 2003.

More Related