1 / 47

Des Éléments Importants des Systèmes de Référence et de la Géodésie au CERN

Des Éléments Importants des Systèmes de Référence et de la Géodésie au CERN. Mark Jones ENMEF-SU. Outline. Introduction CERN Coordinate System (CCS) Altitudes Geoid Models CERN Geodetic reference frames Z  H Transformation Conclusions. The Survey Team.

dane-hodges
Download Presentation

Des Éléments Importants des Systèmes de Référence et de la Géodésie au CERN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Des Éléments Importants des Systèmes de Référence et de la Géodésie au CERN Mark Jones EN\MEF-SU

  2. Outline • Introduction • CERN Coordinate System (CCS) • Altitudes • Geoid Models • CERN Geodetic reference frames • Z  H Transformation • Conclusions

  3. The Survey Team • Large Scale Metrology Section • Metrology • Measurement • Alignment • Monitoring • As-built surveys • First Surveyors at CERN in1954 • Our 60th Anniversary thisyear too! • Surveying is the application of Geodesy

  4. Alexandrie Distance Aswan Geodesy • Geodesy is the science concerned with the Shape, Size, and the Gravity Field of the Earth (International Association of Geodesy) • One of the oldest sciences • Includes temporal variations • 1st Geodesist • Eratosthenes, 200 BC ~5950 km (6371 km)

  5. Surveying • Determine point positions • Different types of Observations • Directions / Angles / Azimuths • Distances • Redundant Observations • Identify errors • Optimisation algorithms (Least Squares) • Simplify calculations as much as possible • Done by hand for many hundreds of years! Pt3 q3 b a q1 q2 Pt1 Pt2 c

  6. Surveying • Different types of instruments • Directions (and distances) • Theodolite / Camera /Total Station / Laser Tracker /Laser Scanner • Distances • Invar wires / EDM / Digital Scales • Height differences • Levels

  7. Measured positions • 2D + 1 Reference system • Horizontal / Planimetric positions • Latitude, f, and Longitude, l • Eastings, E, and Northings, N, (or X, Y)in a mapping plane • Altitudes, H • Heights above Mean Sea Level

  8. Mapping

  9. CERN Reference System • A Reference System covering the whole of the CERN site • First version established at the start of the PS Ring construction at CERN • Defines the relative location all things at CERN • Sites • Buildings • Tunnels • Accelerators • Experiments

  10. CERN Reference System -1955 P0 d q P1

  11. CERN Reference System -1959 X P3 P0 P1 Y

  12. CERN Reference System -1962 Y P2 P1 X (X, Y) = (1000, 1000)

  13. CERN Reference System -1966 Y P2 P1 X (X, Y) = (2000, 2000)

  14. Altitude (Orthometric Height) • Height above Mean Sea Level • Mean Sea Level • Represents 70% of the Earth’s surface! • Traditionally determined by Tide Gauges • An equipotential surface of the gravity field • Equipotential Surface is modelled by a reference surface, Geoid • The surface we choose depends on the accuracy required • The accuracy required will also define the area over which a given surface is valid

  15. CERN Vertical Reference –1954-1970 • A horizontal plane (or different planes) • OK for a small area • Larger area means lower accuracy • Easy for surveyors • A Flat Earth • Challenging for physicists!

  16. CERN Vertical Reference –1954-1969 • PS • Horizontal Plane • Altitude433.660 m • ISR • Horizontal Plane • Altitude445.460 m

  17. CERN Reference System -1970 • CERN Coordinate System (CCS) • A Reference Frame with a 3D Cartesian Coordinate System • Principal Point, pillar P0 • X and Y-axes directions unchanged • Z-axis coincident with local vertical Y P0 P2 P1 X (X, Y) = (2000, 2000)

  18. CCS –Principal Point • Z-coordinate of PS Ring 2433.66000 m • P0 • XY-Coordinates (m) (2000.00000, 2097.79265) • Z-coordinate 2433.66000 m

  19. Vertical Reference –a Sphere • Sphere more complicated than a plane • Higher accuracy over larger areas, • Still easily defined mathematically

  20. Z-Coordinates and Altitudes ZCCS = H + 2000

  21. Z-Coordinates and Altitudes ZCCS ≠ H + 2000

  22. Z-Coordinates and Altitudes • Z-coordinate of PS Ring 2433.66000 m • Z-coordinate of P0 2433.66000 m ZCCS ≠ H + 2000 • Altitude (H) of PS Ring 433.66000 m • Altitude (H) of P0 433.65921 m

  23. Z H = 10 000 m Z = 10 000 m XY-Plane H = 10 000 m Z = 0 m Altitude

  24. CERN Reference System -1983 • CERN Coordinate System (CCS) • Unchanged • New Vertical Reference Surface • Increase in area covered by LEP (LHC) • Higher precision model required

  25. Biaxial Ellipsoid Model • Ellipsoid of Revolution • Ellipse rotated around one of its axes • Mathematics not too complicated • Closer match to the Earth’s shape andgravity field • Positioned locallyfor an even better match • Geodetic Reference Ellipsoid, GRS-80

  26. Topography of the Earth • The ellipsoiddoesn’ttakeintoaccount the topography • The Earthisirregular in shape • The gravityfieldisaffected by theseirregularities Mark Jones EST/SU -Séminaire Technique

  27. Mountainsaffect the Gravity Field Direction of the gravityvector Mass An equipotential surface of the gravityfield Geoid Mark Jones EST/SU -Séminaire Technique

  28. Geoid Model –CERN Geoid 1985 • Calculated differences between an ellipsoidand the Mean Sea Level equipotential of the gravity field • Geoidal Undulations • Institutd’Astronomie,BERN University • A grid of data points • Modelled by a polynomial surface • Hyperbolic Paraboloid • CG1985

  29. CERN Reference System -2000 • CERN Coordinate System (CCS) • Unchanged • Geodetic Reference Ellipsoid • Unchanged • New Geoid Model • Assure direction of CNGS beamline • Best recent model required

  30. Geoid Model –CERN Geoid 2000 • Calculated differences between an ellipsoidand the Mean Sea Level equipotential of the gravity field • Geoidal Undulations • Office Fédéral de Topographie, CH • A grid of data points • Interpolated between grid points • CG2000

  31. Vertical Reference Surfaces at CERN • Geoid model, CG2000 • Grid of points (1 km spacing) • Cubic spline interpolation • Geoid Model, CG1985 • Hyperbolic paraboloid • Spherical Model • Cartesian Z-coordinate but how do we transform Z  H

  32. Z  H Transformation • Need to determine the relationship between the CCS Cartesian system and the Geoid Model • Geoid model is tied to the Geodetic Reference Ellipsoid • Need to establish the local position and orientation of the Reference Ellipsoid with respect to the CCS

  33. Geodeticreferenceellipsoid • Parameters: 2 radii Geodeticreferenceellipsoidestablishedlocally to better model the geoid Position and orientation established by 7 parameters : f0, l0 latitude, longitude h0geodeticheight a0azimuth h0, x0deflections of the vertical N0geoidalundulation Mark Jones EST/SU -Séminaire Technique

  34. CERN Reference Ellipsoids • Sphere • Both radii equal • Mean Earth Radius defined by the IUGG (International Union of Geodesy and Geophysics) • R = 6371 km • Reference Ellipsoid • GRS-80 adopted by the IUGG • a = 6 378 137 m, equatorial radius • b = 6 356 752 m, polar radius

  35. Geodetic Coordinates • Latitude, f, Longitude, l, geodetic height, h ZG Geodetic reference frame P h YG f l Geodetic reference ellipsoid XG

  36. Geodetic Coordinates –P0 • Fix • Latitude, f0 = 51.3692 grad • Longitude, l0 = 6.72124 grad • geodetic height, h0 = 433.66000 m ZG h0 P0 YG f0 l0 XG

  37. Geoid • Fix • a0 = 0.0000 grad • N0 = 0.00000 m P0 h0 Geoid Horizontal plane ZG p0 f0 Plan XYG Mark Jones EST/SU -Séminaire Technique

  38. CCS and Geodetic Reference Frame Vertical CCS Z-Axis P0 CCS XY-plane h0 Horizontal plane ZG p0 f0 Plan XYG • Fix • h0 = 0.0000 grad • x0 = 0.0000 grad Mark Jones EST/SU -Séminaire Technique

  39. CCS and Geodetic Reference Frame • aCCS = 37.77864 Grad ZG aCCS YCCS ZCCS XCCS h0 P0 YG f0 l0 XG

  40. CERN Geodetic Reference Frame • Provides the link between different coordinate systems (1D, 2D & 3D) • CCS (3D) • Altitudes (1D) • Latitude and Longitude (2D) • Mapping Planes (2D) • Global Geocentric Reference Frames • Relies upon a model for the shape of the Earth and the Gravity Field

  41. Z and H CCS Z-Axis P P0 ZP HP CCS XY-plane h0 NP ZG p0 f0 Plan XYG Mark Jones EST/SU -Séminaire Technique

  42. Conclusions • ZCCS≠ H + 2000 • Three different vertical reference surfaces • Implies three Z H Transformations • Care is needed to use the right transformation!

  43. Conclusions • Things aren’t quite as simple as they used to be … • … and things get more complicated as the required precision increases • Changes in the gravity field • Tides, atmospheric pressure, water tables, plate tectonics … • More precise determination of the gravity field

  44. Conclusions • Fortunately we no longer calculate things by hand! • We have developed a database and various software applications to help

  45. Thank you for your attention!

More Related