1 / 67

Förädlingssynpunkter

Förädlingssynpunkter. Dag Lindgren Ekebo 07-03-20. Foto: Darius vid vårt seminarium Ekebo 2004. Ämnen att föredra. Antytt vilka grupper det sorterar under. Enligt uppdrag från Ola Rosvall: Antal pollen i polymix (grupp 3); Polymix breeding (grupp 3 + grupp 2);

edowns
Download Presentation

Förädlingssynpunkter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Förädlingssynpunkter Dag Lindgren Ekebo 07-03-20 Foto: Darius vid vårt seminarium Ekebo 2004

  2. Ämnen att föredra. Antytt vilka grupper det sorterar under. Enligt uppdrag från Ola Rosvall: • Antal pollen i polymix (grupp 3); • Polymix breeding (grupp 3 + grupp 2); • Breeding without breeding (grupp 3 + grupp 2); • Korsningssystem SPM, DPM, Polycross (grupp 3); • Obalanser (grupp 3 m fl.).

  3. Antal pollen i en pollencocktail?

  4. Conclusion: Somewhat below 10 seem sufficient…

  5. ”Grupp 3” säger 25 pollen • Beaktar variationer i pollenkvalité mellan olika kloner; • Gör det möjligt att variera pollen (inom ”population”) med bibehållen kompatibilitet; • Ofta är färre pollen acceptabelt, men merkostnaden är troligen liten; • ”Vi” har hittills utgått från att dominansvariationen är 25% av den additiva. Om ”vi” skulle höja till >75% kan det motivera översyn; • Finns dokument ”polymix” på webben.

  6. Urval framåt i PMX • Idé Lambeth 2001; gör urval framåt i polymix familjerna; klara upp föräldrarna i en polymix i efterskott med markörer, • Detta skulle kunna tänkas vara överlägset ”huvudspåret” och bör därför utvärderas, även om jag tror att ”många korsningar” är bättre om man förbereder många mödrar och fäder för korsning. • Information om fadern i polymixen utnyttjas. Vid konventionell polycross-avkommeprövning av modern är fadern enbart ett störande brus.

  7. PMX-breeding; förslag till design • Indela en bpop i 5 avdelningar; • Från en avdelning väljs 50 mödrar som ympas och från en annan 25 fäder som skördas på pollen till en pollenmix; • Polycross, nytt fältförsök; • Fastställ fäder till lovande träd i fältförsöket; • Välj 50 till mödrar och 25 till fäder. Valet sker med en variant av Group Merit Selektion; • Etc. , cirkeln är sluten!

  8. Dag’s övervägande om selektion framåt i polymixavkommor • Biologiskt, praktiskt och tekniskt möjligt med befintlig teknik, men troligen inte förädlingsekonomiskt: • Det saknas nog lämpliga objekt för att starta urvalet (för ointressanta och få fäder i de pollenblandningsavkommor som nått fältet); • Gör systemstudier (POPSIM); • Gör nu några fpop avdelningar med PMX-korsningar i verkligheten. Bra studier fordrar att verkliga data och material är bra! Skillnaden mot gårdagens polycrossar ligger i överväganden av pollenmixar och dess matchning till mödrar. Merkostnaden att framställa dessa material blir minimal, eftersom de ligger nära vad som är huvudspåret nu. • Om Skogforsk skapar materialet nu, så kan göra man göra skarpa selektioner om 10-15 år. • Finare optimering och effektiva algoritmer bör inte göras utan skarpa data. De bör därför inte utveckla de kommande 10 åren.

  9. Breeding without Breeding (Concept coined by El-Kassaby 2006,)

  10. Idea • Let Nature do the recombination! • No controlled crosses any more! • Get pedigree by markers instead of crosses!

  11. Can be applied at full scale directly following a pilot study; • No risk; • Probably brand new and fastly expanding research area!; • Some of the designs I show are likely to work with little marker development, but may not be good breeding economy. Others (in particular where it is required to identify both parents), may need considerable marker development.

  12. Breeding Without Breeding: Breeding values without test families • No experimental trees or plants; • Neglible measurement costs; • Reward of investment immediate!

  13. Breeding values without testfamilies Find the goodies Estimate breeding value for ability to get good progeny Forest Seed orchard Parents with markers

  14. Breeding without BreedingApplikation – Enkel • Bara två komponenter i fält som skogsbruket har ändå: Fröplantager och skog! • Inga korsningar; • Inga klonarkiv; • Inga tester; • Inga försöksstationer….

  15. Simple Breeding without Breeding Cycle Forest Group merit selection Seed orchard

  16. Breeding without BreedingModification of mass selection - low input breeding • Select plus trees in the forest; • Put grafts in a seed orchard; • Harvest seeds; • Grow a forest; • Select plus trees; • The cycle is closed!

  17. Combined index(maximizes gain) Mass selection (easy) Between family(exhausts diversity) Within family(conserves diversity) 0.5 Min Diversity Max Note that phenotypic (=mass) selection is on the optimising curve, thus no way to get more gain without giving up diversity! Modified Mass-selectionGain cannot be higer than curve at a given diversity Gain 0 1 Modified from Lindgren and Wei 1993

  18. But will Breeding without Breeding build up relatedness? • We doubt to apply simple methods now because we do not know what it will do to relatedness; • With genotyping by markers we know!!!; • Markers offer more reliable control of coancestry than today!

  19. Applikation – selektion i OP familjer • Om pollenmolnet är delvis förädlat från ett begränsat antal fäder (avkommeprövning med fri avblomning i plantage) kan förädling bedrivas ungefär som vid urval framåt i polycross. • Tänk efter om det finns någon fröplantage med dåligt testade kloner som kan lämpa sig för avkommeprövning med fri avblomning följt av urval framåt.

  20. Application Norway spruce long term breeding

  21. (20) (20) (20) (20) (20) (20) (20) (20) “Conventional” Norway spruce breeding Clonal test by far the best Crosses Cloning of 20 seedlings Field test with 20 ramets from each Select at age 20 The breeding cycle is complete!

  22. (20) (20) (20) (20) (20) (20) (20) (20) Breeding without BreedingApplication Norway spruce clonal The breeding cycle is complete! Cloning of 20 seedlings Field test with 20 ramets from each Select at age 20 Harvest seeds from good mothers Selects seeds with good fathers Analyze seeds

  23. Advantages: • No artificial crosses • No clone archives or top-grafting • Robust, optimal testing design, nothing lost if BwB is never applied! • Norway spruce flowers irregular, but nothing has to be done until a good cone set observed • Spruce flowers also rather well at age 20 in good clima provided intensive thinning some years before • Measurements done the seed maturation year • Clonal propagation takes some years, but 80% of the breeding cycle is used for the gain generating testing and only 20% for improductive wait! • The breeding cycle is reduced maybe years (the time for top-grafting and wait for crosses).

  24. Old clone tests • Could be used to harvest the gains from old clone tests which has not been utilised before (Hilleshög, Mellansvenska)…

  25. Rekommendation för BWB • Det är ganska troligt specialfall av BWB kommer till praktisk användning inom tio år; • Genomslag kan ske ganska snabbt; • Understöd forskning och stimulera forskning på ”skarpa” material.

  26. Korsningssystem • DPM can remain as a general main design; • SPM is not bad and can be used in low input situations or in lower strata of the breeding population; • If one DPM fails and parents still get progeny in one cross it is not worth delaying crossing effort; • SPM and DPM gives much information about BV of parents.

  27. Selektion framåt i OP-familjer • Om pollenmolnet är försök eller i fröplantager kan okänd fader trassla till, och kan man inte faderskapsbestämma med markörer så är jag tveksam; • Ibland kan BWB tekniker vara användbara; • Fortsatt betraktelse avser pollenmoln ur ”samma” population som modern valts, obesläktad med andra val.

  28. Forward selection in OP • Parents ranking below 25 for BV in the BPOP can be replaced by the best OP offspring; • For parents ranking higher than 25 continued efforts to get crosses is recommended; • Anyway while waiting selections can be done from offspring; • Several selections can be done from the OP offspring and OP progeny tested before crosses.

  29. Slut grupp 2-3

  30. Unbalances in Tree Breeding

  31. “Genetic unbalances” are: • The basis for evolution; • Natural – balance is extremely unnatural; • Unavoidable; • Essence of breeding.

  32. Genetic contributions varies. Natural selection favors some and disfavors others, (survival of the fittest), thus some contributions will increase, other decrease

  33. Selection means always unbalance, not selected components get no contribution Selected Not selected Contribution of component I talk about more sophisticated unbalance

  34. Svensk skogsträdsförädling 2007 kan ses som extrem obalans • All avkomma till den andra generationen kommer från endast 20% av ”grundarna” de testade plusträden.

  35. Different types of unbalances… • Unbalance in genetic components (parents, founders); • Unbalance in resources; • Structure of breeding population (e.g. mating probability, PAM); • Unbalances both at creating recruitment populations and at final selections, these have to be optimised together. Often they come together, thus “Nucleus” (elite-main) has many components of unbalance

  36. Why unbalance? Breeding has to consider: • Gain; • Gene diversity; • Cost; • Time; • Interaction breeding → seed orchards. Unbalances may make the breeding system more optimal and efficient. Unbalances offer more degrees of freedom for optimization (balance is a form of simplification fundamentalism)

  37. Reasons against unbalance? • Unbalance may just make things worse if not done wisely and skillfully; • Unbalance is more demanding on management skills; • Often the tools for handling unbalance are badly developed! • Seldom transparent, difficult to sell; • Sometimes the advantage is small, usually limited (3-8%) and seldom drastic (20%); • Advantages predicted for an ideal situation, usually somewhat less in the real world! • Historically difficult to manage, thus traditional wisdom is against, now computers can do everything!!!?.... • Requires calculations to be done.

  38. Unbalance is a black box! Requires lots of competence!Risky… Input: breeding values, ramet numbers Output: Gain, effective number, remaining ramets per clone

  39. More reasons for unbalance • Even a limited extra gain (e.g. 5% increase in gain) means enormous economic returns; • Complete balance is practically unrealistic! Unbalance must anyway be managed, so why not do it efficient!?

  40. Quantitative evaluation of unbalance often overestimates the practical benefit! • Genetic parameters (genetic correlations) change over time and environment; • Environment changes; • Unreliable parameter estimations; • Breeding goals change and are not exactly predictable; • Planned unbalances are influenced by unplanned;

  41. Suggestion:Apply unbalance, but with moderation! • Apply unbalances; • But do it with moderation and not too drastic; • It might sometimes be a good idea to try compromising between balance and the predicted optimal unbalance; • After gaining experience of unbalance, a larger share of predicted advantages may be utilized.

  42. Unbalances in production population • Simplest case, only unbalances in different contributions (e.g. clones, parents) matter. • Jag gissar att detta nu är accepterat i Sverige så jag säger inte mer….

  43. Unbalanced contributions at the initiation of a tree improvement program Closing the breeding population is irreciprocal and can not be undone! Argument to play on the safe side!

  44. Unbalances in setting up the first recruitment population • Generalized from Ruotsalainen (2002) PhD thesis; • An approximation to linear deployment (3,2,1).

  45. The same resources, the same gene diversity. But 8 percent more gain with unbalance!

  46. Result Andersson PhD thesis 1999 Unbalanced selection is superior to balanced in the initiation of a breeding program!

  47. Unbalance by refreshing in F1Inspired from Andersson PhD thesis (1999) • Unbalance could perhaps be introduced in F1 by refreshing (adding formerly discarded plus-tree genes): • In model-calculations it was favorable to replace 5-10% of founders at F1 with new plus trees; • That indicates that it may sometimes be beneficial to replace one or a few of bottom ranking BP members with new founders in the Swedish breeding; • The introduced founders may have slightly lower BV, but the Group merit of the BP could increase. That would mean that a few F1 BP would be crossed with new founders to form the next BP generation; • The bottom ranking selected founders are only slightly superior to the best non-selected candidates. • The refreshment may be e.g. old grafts in clonal archives with top BV ranks of those which have not F-1 progeny yet and which are in breeding populations there 50 or less parents has formed F1-progeny, which may serve as mothers for freshly collected pollen from F1-trees in the forest.

  48. Unbalances in long term breeding

More Related