1 / 33

Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds :

Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5. S.-H. Baek et. al. PRL 105 ,217002(2010). Kazuhiro Nishimoto Kitaoka lab. 1. Contents. Introduction - History of superconductivity

idana
Download Presentation

Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59Co NMR Study in PuCoGa5 S.-H. Baek et. al. PRL 105,217002(2010) Kazuhiro Nishimoto Kitaoka lab. 1

  2. Contents • Introduction • - History of superconductivity • - Heavy fermion system • - Transuranic HF compounds • - Motivation • Measurement • - NMR (Nuclear Magnetic Resonance) • Experimental Results (PuCoGa5) • Summary 2

  3. introduction 1900 1920 1940 1960 1980 2000 2020 Year History of Superconductivity 200 metal Discovery of superconducting phenomenon heavy fermion system high-Tc cuprate 1911 163 Hg-Ba-Ca-Cu-O iron-based system under high pressure ( ) 150 Hg-Ba-Ca-Cu-O Tl-Ba-Ca-Cu-O Heavy fermion superconductor Bi-Sr-Ca-Cu-O 1979 1986 100 Transition temperature (K) Y-Ba-Cu-O 77 SmO F FeAs High-Tc cuprate superconductor 50 0.9 0.11 MgB2 La-Ba-Cu-O LaO F FeAs PuCoGa5 2006 Nb Ge 0.11 0.89 Nb Pb CeCu2Si2 NbN LaOFeP Hg NbC Iron-based high-Tc superconductor 0 3

  4. introduction f f f f f f c-fhybridization ( c-f混成) Heavy Fermion System What does “Heavy” mean? Heavy Fermion system Normal metal + + + + + + + + + + + + Strong electron correlation makes effective mass large. “Heavy” ⇒large effective mass 4

  5. introduction Heavy Fermion System Example of heavy fermion superconductor compounds CeCu2Si2 CePd2Si2CeRh2Si2CeIn3CeRhIn5 PrOs4Sb12 lanthanide compounds ⇒some 4f electrons UPt3UPd2Al3 PuCoGa5 actinide compounds ⇒some 5f electrons All of HF compounds have f-electrons. 5

  6. introduction Transuranic HF Compounds transuranium elements (超ウラン元素) • don’t exist in nature • Handling is difficult because of • strong radioactivity example : PuCoGa5 , PuRhGa5 , NpPd5Al2 6

  7. introduction Motivation iso-structural superconductor PuCoGa5 : Pu-115 compounds CeCoIn5 : Ce-115 compounds 5f-electron : 5個 Tc = 18.5 K 4f-electron: 1個 Tc = 2.3 K Amazingly high Tc in HF 115 compounds NMR study (PuCoGa5 in normal state) • Spectra • K (Knight shift) • 1/T1T 7

  8. measurement Introduction NMR spectra I =1/2 m=-1/2 gℏH0 m=+1/2 Zeeman splitting NMR Intensity ω 8

  9. measurement Knight shift NMR Intensity H electron Knight shift 9

  10. measurement Release the energy Excitation energy T1~spin-lattice relation time I=-1/2 I=+1/2 nuclear spin electronic spin spin-lattice interaction Energy- transfer 1/T1 is quite sensitive to spin fluctuations 10

  11. result 59Co NMR Spectra at 19 K Co : I =7/2 g = 10.103MHz/T Spectra • Quadrupole Interaction : I >1 • (電気四重極相互作用) • νQ = 1.02 MHZ νQ 11

  12. result Knight shifts and 1/T1 ~T3 • Knight shifts show strongly anisotropic behavior. • At Tc both sifts drop sharply , indicating spin-singlet pairing. • 1/T1⇒d-wave superconductor Spin singlet S=0 anisotropic : 異方性 12

  13. result 1/T1T in 115 compounds • LuCoGa5 • 1/T1T = const • conduction electrons ⇒metallic • PuCoGa5 • conduction electrons + 5f-electrons • ⇒heavy fermion state PuCoGa5 LuCoGa5 Spin fluctuations develop as temperature decrease. Anisotropy (T1T)∥-1 / (T1T)⊥-1reaches a maximum just above Tc . 13

  14. result Korringa ratio Korringa ratio RK > 1 ⇒ antiferromagnetic RK~ 1 ⇒Fermi gas RK < 1 ⇒ ferromagnetic From K(T) and 1/T1T , Rk ranges from 5 to 16 Strong AFM fluctuations in PuCoGa5 14

  15. result Anisotropic nature PuCoGa5 : tetragonal structure (a=b≠c) new spin-lattice relaxation rate • in-plane component : Ra • out-of-plane component : Rc (1/T1T )H∥c = 2Ra (1/T1T )H⊥c = Ra+Rc AFM spin fluctuation is strong In XY-plane. 15

  16. result Ratio of spin fluctuation energy : ρ χ″(q=Q,ω) Γ Magnetic order ratio : ω 115 HF compounds ρ> 1 ⇒ XY-like anisotropy Cuprates : YBa2Cu3O7 ρ ⋍ 1 ⇒ isotropic Spin fluctuation energy : 16

  17. result Tc versus Γa/Γc for 115 HF superconductors • Reduced dimensionality could enhance Tc . • Anisotropy Γc/Γa is a good parameter for determining Tc. 17

  18. Summary PuCoGa5 : 59CoNMR study in the normal state • Spin fluctuations promote d-wave superconductivity in the • iso-structural 115 HF compounds. • Both the Knight shift K and the spin-lattice relaxation rate 1/T1 • are strongly anisotropic. • The ratio Γc/Γa (spin fluctuation energy) is a characteristic quantity in 115 HF compounds. This suggest the possibility • that anisotropic spin-fluctuations enhance Tc. 18

  19. b : The normal-state magnetic shift K tot of the 59Co and 71Ga(1) versus bulk susceptibility x. a : 71Ga NMR spectra in 8T c : The total magnetic shift K tot of the 59Co and 71Ga(1) versus temperature.

  20. 1/T1温度依存性 ~T0.35 ~T3

  21. Normalized spin susceptibility in the superconducting state. 71Ga 59Co

  22. (T 1T )-1/(T 1T )-10 versus T/Tc (T 1T )-10 is given by the value of (T 1T )-1 at 1.25Tc

  23. Tc versus the characteristic spin fluctuation energy T0 T0 = ΓqB2/2π

  24. c/a ratio of tetragonal structure parameter versus Tc

  25. Temperature - pressure phase diagram

  26. 電気四重極相互作用 C軸となす角度 H∥c θ=0° H⊥c θ=90°

  27. Crystal structure in 115 compounds

  28. 遍歴的 局在的

  29. What can we know from Knight shift ?~Symmetry of Cooper pair~ Cooper pairing state S=0 orbital part spin part even function (s, d wave) Φ(-(r1-r2)) =Φ(r1-r2) spin-singlet s (s2,s1) = -s (s1,s2) S=1 s-wave d-wave odd function (p wave) Φ(-(r1-r2)) = -Φ(r1-r2) spin-triplet s (s2,s1) = s(s1,s2) ψ(r1-r2;s1,s2) = Φ(r1-r2) σ(s1,s2) p-wave orbital spin

  30. 1/T1 in various superconductors unconventional superconductors (non BCS) NS(E) NS(E) Point nodes Line nodes N0 N0 EF EF +Δ0 EF +Δ0 EF EF +Δ0 d-wave p-wave EF Conventional type (BCS) s-wave

More Related