1 / 19

Nanolatex based nanocomposites : control of the filler structure and reinforcement .

Nanolatex based nanocomposites : control of the filler structure and reinforcement . A. Banc 1 * , A-C. Genix 1 , C. Dupas, M. Chirat 1 , S.Caillol 2 , and J.Oberdisse 1 1 Laboratoire Charles Coulomb, Université Montpellier 2, Montpellier, France

janice
Download Presentation

Nanolatex based nanocomposites : control of the filler structure and reinforcement .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nanolatex based nanocomposites: control of the filler structure and reinforcement. A. Banc1*, A-C. Genix1, C. Dupas, M. Chirat1, S.Caillol2, and J.Oberdisse1 1Laboratoire Charles Coulomb, Université Montpellier 2, Montpellier, France 2 Institut Charles Gerhardt, Montpellier, France

  2. σ λ Mechanicalreinforcement in nanocomposites ? Microstructure Mechanicalproperties Composite properties ≠ Filler properties + Matrixproperties Percolation threshold • Filler-filler interactions • Filler-matrix interactions FFiller Filler network Dilutedregime Jouault et al.

  3. Model nanocompositeswithtunable filler structure Colloïdal silica Nanolatex + Øsi≈30 nm PolyEthylMethacrylate (PEMA) Tg>Tamb ØPEMA≈30 nm OR 200nm Mw ≈ 20, 50 or 160 kg/mol Drying Water evaporation Annealing Particlesdeformation Nanocomposite Polymer diffusion TUNABLE nanostructure: f(FSi, ØSi/ØPEMA, Mw )

  4. Effect of Rlatex/Rsi

  5. Small Angle Scattering S(q) P(q) I(cm-1) I(q) ks ki l ki ks Wavevector q= - q(Å-1) I(q)= f(F, Dr, P(q), S(q)) F= Volume fraction Dr=rScatteringobjects-rmatrix r=Scatteringlenghdensity P(q) = Form factor S(Q)= Structure factor Silicananoparticles P(q) P(q)*S(q) q-df df= fractal dimension d qmax <R>=14 nm s=0,11

  6. Structure Colloidal solutions Rsilica~Rlatex~14 nm Rsilica<<Rlatex~100 nm Latex nanoparticles d*=196 nm Silicananoparticles d**=27 nm Q-2,4 Q-3 ● 0% ● 1% ● 3% ● 5% ● 10% Lowsilicaaggregation Fractal aggregates Template effect of the latex Structuredporous network

  7. Rsilica~Rlatex~14 nm Rsilica<<Rlatex~100 nm 1% 1% Heterogeneous 10% 10% 5µm 5µm 5µm 5µm 500nm 500nm

  8. Rheologicalproperties Matrix 10% nanocomposite G’ G’ G’’ G’’ x4 G’’ G’’ G’ G’ Silica structure little impacts G’ atlowfrequency (long times) No important effect of the silica structure on rheologicalproperties (Lowstrain: 0,2%)

  9. Effect of the matrix Mw

  10. Structure: SAXS Rsilica~Rlatex~14 nm 10% 5% 3% 1% Matrix df=2,3 df=2,4 Mw= 160 000g/mol 50 000g/mol 20 000g/mol Bigger fractal aggregates Fractal aggregates Welldispersed filler

  11. Structure: TEM 1% 3% 10% PEMA20 PEMA50 500 nm PEMA160

  12. Structure: Monte Carlo simulation 1% nanocomposites: No inter-aggregate structure factor 160 000g/mol 20 000g/mol <Nagg>=3 <Nagg>=51 Kappa>20% Kappa=12.5% Image analysis Monte Carlo simulation Correlation direct space and reciprocalspace via simulation

  13. Structure: 10% nanocomposites 20 000g/mol 50 000g/mol 160 000g/mol d* d* Model cubic network d* d*=2P/q* Silica networks whose the characteristic size decreaseswithMw => decrease of the wallthickness

  14. Structure: overview <Nagg=51> K=12% d* 1% 3% 10% df=2,4 PEMA20 d* df=2,3 PEMA50 <Nagg=3> K>20% d* 500 nm PEMA160

  15. Rheologicalproperties: matrices Master curveatannealingtemperature (180°C): GN G’’ G’ PEMA160 PEMA50 PEMA20 G’’ G’ G’ G’’ PEMA criticalentanglement mass: Mc=~13,5 kg/mol (PEMA20: Mn=10,7kg/mol Mw=18,5kg/mol) Filler mobility: PEMA20 > PEMA50 > PEMA160

  16. Rheologicalproperties: nanocomposites Two filler volume fraction regimes: -F<Fthresholdviscoelasticmaterial -F>Fthresholdelasticmaterial Filler effect: -G’ atlowfrequency 5%< Fthreshold<10%

  17. AtF<Fthreshold • Aggregate fractal dimension: • df=2,4 (SAXS) • Reaction Limited Aggregation • -Slow aggregation In the weak-linkregime: G’~φ1/(3-df) G’~φ1,7 Rheology of fractal objets Shih et al, 1990

  18. d* d* AtF>Fthreshold d* Power law ? Fractal aggregatesreinforcemuch more than the welldispersed filler.

  19. Conclusions - Prospects • Model nanocomposites • Variousnanoparticledispersions: welldispersed / fractal aggregates / porous network => Novel structures with mixtures of latex bead sizes • Quantitative description of the filler structure : Direct space Reciprocalspace SAXS TEM Image analysis + Simulation • Mechanicalreinforcement • Mostlyatlowfrequency – aggregated filler reinforcebetterthan the welldispersed one => Behaviorat large strains? … => Dynamicalapproaches of the mechanicalreinforcement

More Related