1 / 37

Stability from Nyquist plot

Stability from Nyquist plot. The complete Nyquist plot: Plot G ( j ω ) for ω = 0 + to + ∞ Get complex conjugate of plot, that’s G ( j ω ) for ω = 0 – to – ∞ If G(s) has pole on j ω -axis, treat separately Mark direction of ω increasing Locate point: –1.

pearl
Download Presentation

Stability from Nyquist plot

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stability from Nyquist plot The completeNyquist plot: • Plot G(jω) for ω = 0+ to +∞ • Get complex conjugate of plot, that’s G(jω) for ω = 0– to –∞ • If G(s) has pole on jω-axis, treat separately • Mark direction of ω increasing • Locate point: –1

  2. Encirclement of the -1 point • As you follow along the G(jω) curve for one complete cycle, you may “encircle” the –1 point • Going around in clock wise direction once is +1 encirclement • Counter clock wise direction once is –1 encirclement

  3. Nyquist Criterion Theorem # (unstable poles of closed-loop) Z= # (unstable poles of open-loop) P + # encirclement Nor: Z = P + NTo have closed-loop stable: need Z = 0, i.e. N = –P

  4. That is: G(jω) needs to encircle the “–1” point counter clock wise P times. • If open loop is stable to begin with, G(jω) cannot encircle the “–1” point for closed-loop stability • In previous example: • No encirclement, N = 0. • Open-loop stable, P = 0 • Z = P + N = 0, no unstable poles in closed-loop, stable

  5. Example:

  6. As you move around from ω = –∞ to 0–, to 0+, to +∞, you go around “–1” c.c.w. once. # encirclement N = – 1. # unstable pole P = 1

  7. i.e. # unstable poles of closed-loop = 0 • closed-loop system is stable. • Check: • c.l. pole at s = –3, stable.

  8. Example: • Get G(jω) forω = 0+ to +∞ • Use conjugate to get G(jω) forω = –∞ to 0– • How to go from ω = 0– to ω = 0+? At ω ≈ 0 :

  9. # encirclement N = _____ # open-loop unstable poles P = _____ Z = P + N = ________ = # closed-loop unstable poles. closed-loop stability: _______

  10. Example: • Given: • G(s) is stable • With K = 1, performed open-loop sinusoidal tests, and G(jω) is on next page • Q: 1. Find stability margins • 2. Find Nyquist criterion to determine closed-loop stability

  11. Solution: • Where does G(jω) cross the unit circle? ________ Phase margin ≈ ________Where does G(jω) cross the negative real axis? ________ Gain margin ≈ ________Is closed-loop system stable withK = 1? ________

  12. Note that the total loop T.F. is KG(s). If K is not = 1, Nyquist plot of KG(s) is a scaling of G(jω). e.g. If K = 2, scale G(jω) by a factor of 2 in all directions. Q: How much can K increase before GM becomes lost? ________ How much can K decrease? ______

  13. Some people say the gain margin is 0 to 5 in this example Q: As K is increased from 1 to 5, GM is lost, what happens to PM? What’s the max PM as K is reduced to 0 and GM becomes ∞?

  14. To use Nyquist criterion, need complete Nyquist plot. • Get complex conjugate • Connect ω = 0– to ω = 0+ through an infinite circle • Count # encirclement N • Apply: Z = P + N • o.l. stable, P = _______ • Z = _______ • c.l. stability: _______

  15. Correct Incorrect

  16. Example: • G(s) stable, P = 0 • G(jω) for ω > 0 as given. • Get G(jω) forω < 0 by conjugate • Connect ω = 0– to ω = 0+.But how?

  17. Choice a) : Where’s “–1” ? # encirclement N = _______ Z = P + N = _______ Make sense? _______ Incorrect

  18. Choice b) : Where is“–1” ? # encir.N = _____ Z = P + N= _______ closed-loopstability _______ Correct

  19. Note: If G(jω) is along –Re axis to ∞ as ω→0+, it means G(s) has in it. when s makes a half circle near ω = 0, G(s) makes a full circle near ∞. choice a) is impossible,but choice b) is possible.

  20. Incorrect

  21. Example: G(s) stable, P = 0 • Get conjugatefor ω < 0 • Connect ω = 0–to ω = 0+.Needs to goone full circlewith radius ∞.Two choices.

  22. Choice a) : N = 0 Z = P + N = 0 closed-loopstable Incorrect!

  23. Choice b) : N = 2 Z = P + N= 2 Closedloop has two unstable poles Correct!

  24. Which way is correct? For stable & non-minimum phase systems,

  25. Example: G(s) has one unstable pole • P = 1, no unstable zeros • Get conjugate • Connectω = 0–to ω = 0+.How?One unstablepole/zeroIf connect in c.c.w.

  26. # encirclement N = ? If “–1” is to the left of A i.e. A > –1 then N = 0 Z = P + N = 1 + 0 = 1 but if a gain is increased, “–1” could be inside, N = –2 Z = P + N = –1 c.c.w. is impossible

  27. If connect c.w.: For A > –1N = ______ Z = P + N = ______ For A < –1N = ______ Z = ______ No contradiction. This is the correct way.

  28. Example: G(s) stable, minimum phase P = 0 G(jω) as given: get conjugate. Connect ω = 0– to ω = 0+,

  29. If A < –1 < 0 :N = ______Z = P + N = ______ stability of c.l. : ______ If B < –1 < A : A=-0.2, B=-4, C=-20N = ______Z = P + N = ______ closed-loop stability: ______ Gain margin: gain can be varied between (-1)/(-0.2) and (-1)/(-4), or can be less than (-1)/(-20)

  30. If C < –1 < B :N = ______Z = P + N = ______ closed-loop stability: ______ If –1 < C :N = ______Z = P + N = ______ closed-loop stability: ______

More Related