1 / 28

Interacciones Proteína - Proteína

Interacciones Proteína - Proteína. Fuertes (t = s, min) Complejos proteicos (estables) Débiles (t = m s, ms) Complejo intermediario (transitorio) en una reacción enzimática. Interactions between functional group s. Schwikowski et al . (2000) Nature Biotec h. 18, 1257 - 1261.

peony
Download Presentation

Interacciones Proteína - Proteína

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interacciones Proteína - Proteína Fuertes (t = s, min) Complejos proteicos (estables) Débiles (t = ms, ms) Complejo intermediario (transitorio) en una reacción enzimática

  2. Interactions between functional groups Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

  3. Interactions between proteins of different compartments Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

  4. Yeast SH3 domains — which recognize proline-rich peptides — generated a network containing 394 interactions among 206 proteins Tong et al. (2002) Science 295, 321-324

  5. An interaction map of the yeast proteome assembledfrom published interactions Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

  6. Protein network inSaccharomyces cerevisiae ..\..\LINKS\Ho Nature(2002).pdf Ho et al. (2002) Nature 415, 180

  7. Analysing protein interactions: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry Kumar & Snyder (2002) Nature 415, 123-124 Ho, Y et al. (2002) Nature 415, 180 - 183

  8. How does a trimeric G protein on the inside of a cell membrane respond to activationby a transmembrane receptor? Trimeric (abg) G proteins relay signals from transmembrane receptors to intracellular enzymes and ion channels, thereby mediating vision, smell, taste and the actions of many hormones and neurotransmitters T. Iiri et al. (1998) Nature 394, 35-38

  9. The GTPase cycle of trimeric G proteins The 'turn-on' step begins when the activatedreceptor (R*) associates with the trimer of (aGDPbg), causing dissociation of GDP. Then GTPbinds to the complex of R* with the trimer in its 'empty' state (aebg), and the resulting GTP-induced conformational change causes aGTP to dissociate from R* and from bg. After the 'turn-off' step (hydrolysis of bound GTP to GDP and inorganic phosphate, Pi), aGDP reassociateswithbg. T. Iiri et al. (1998) Nature 394, 35-38

  10. Contacts between Gbg (left) and Ga-GDP (right) Red dashed linesindicate contacts that appear to be required for receptor activation but not for Ga–Gbg association; greendashed lines indicatecontacts that are important for both functions T. Iiri et al. (1998) Nature 394, 35-38

  11. How does a trimeric G protein on the inside of a cell membrane respond to activationby a transmembrane receptor? Biomedical relevance: G-protein mutations in patients with hypertension andinherited endocrine disorders enhance or block signals from stimulated receptors. T. Iiri et al. (1998) Nature 394, 35-38

  12. PARP-1: A Perpetrator of Apoptotic Cell Death Apoptotic cell death is triggered by activation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Through unknown mechanisms, PAR formation and NAD+ depletion may trigger a cascade of events. A. Chiarugi &M.A. Moskowitz (2002) Science 297, 200

  13. Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

  14. light b6f Fd PS I Pc Cyt c6 PSI-driven Electron Transfer

  15. Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

  16. Oxygen content of the earth's atmosphere 1 Berkner-Marshall Point (Terrestrial life) 0.1 Pasteur Point Atmospheric Level (fractions of 21% v/v) (O respiration) 2 0.01 EUKARYOTES Photosynthetic O production 2 0.001 3 1 4 2 0 9 Time (10 years ago) (Adapted from Peschek, 1996) PROKARYOTES

  17. 2- S SO 2- 4 Fe Availability Cu 3 1 4 2 0 9 Time (10 years ago) (Adapted from Williams & Silva, 1997)

  18. Cu ligands: His-35 Cys-84 His-87 Met-92 Plastocyanin

  19. Heme ligands: His-19 Met-61 Cytochrome c6

  20. Organism Protein pI ___________________________________________________ Spinach Plastocyanin 4.2 Monoraphidium Plastocyanin 3.7 Cytochrome c6 3.6 Anabaena Plastocyanin 9.0 Cytochrome c6 9.0 Synechocystis Plastocyanin 5.5 Cytochrome c6 5.6 ____________________________________________________ Isoelectric point of cytochrome c6 and plastocyanin isolated from different organisms ___________________________________________________

  21. Cytochrome c6 Plastocyanin De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45

  22. Photosynthetic organisms growing under controlled conditions

  23. DA = 2 x 10-3

  24. K K A R P r o t + P S I [ P r o t . . . P S I ] [ P r o t . . . P S I ] * r e d r e d r e d r e d r e d r e d 1 2 3 n n n h h h K ' K ' A R P r o t + P S I [ P r o t . . . P S I ] [ P r o t . . . P S I ] * r e d o x r e d o x r e d o x 1' 2' 3' k e t Routes n h a: 1 1' 2' 3' 4 n h P r o t + P S I 4 b: 1 2 2' 3' 4 o x r e d n h c: 1 2 3 3' 4 De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45

  25. KINETIC TYPES FOR THE REACTION MECHANISM Type I Protred + PSIox Protox + PSIred Type II Protred + PSIox[Protred ... PSIox]  Protox + PSIred Type III Protred + PSIox[Protred ... PSIox] [Protred ... PSIox]*  Protox + PSIred KINETIC TYPES FOR THE REACTION MECHANISM Type I Protred + PSIox Protox + PSIred Type II Protred + PSIox[Protred ... PSIox]  Protox + PSIred Type III Protred + PSIox[Protred ... PSIox] [Protred ... PSIox]*  Protox + PSIred KINETIC TYPES FOR THE REACTION MECHANISM Type I Protred + PSIox Protox + PSIred Type II Protred + PSIox[Protred ... PSIox]  Protox + PSIred Type III Protred + PSIox[Protred ... PSIox] [Protred ... PSIox]*  Protox + PSIred KINETIC TYPES FOR THE REACTION MECHANISM Type I Protred + PSIox Protox + PSIred Type II Protred + PSIox[Protred ... PSIox]  Protox + PSIred Type III Protred + PSIox[Protred ... PSIox] [Protred ... PSIox]*  Protox + PSIred Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

  26. Flexibilidad estructural de la plastocianina

More Related