1 / 37

Neutrino physics Lecture 3: Neutrino astrophysics

Neutrino physics Lecture 3: Neutrino astrophysics. Herbstschule für Hochenergiephysik Maria Laach 04-14.09.2012 Walter Winter Universität Würzburg. TexPoint fonts used in EMF: A A A A A A A A. Contents. Introduction: Neutrinos and the sources of the UHECR Simulation of sources

Download Presentation

Neutrino physics Lecture 3: Neutrino astrophysics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino physicsLecture 3: Neutrino astrophysics Herbstschule für Hochenergiephysik Maria Laach 04-14.09.2012 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAAAAA

  2. Contents • Introduction:Neutrinos and the sources of the UHECR • Simulation of sources • Example:Neutrinos from Gamma-Ray Bursts (GRBs) • Neutrino oscillations in the Sun (if time) • Summary and conclusions

  3. Nobel prize 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos“ • Raymond Davis Jr detected over 30 years 2.000 neutrinos from the Sun • Evidence for nuclear fusion in the Sun‘s interior! • Masatoshi Koshiba detectedon 23.02.1987 twelve of the 10.000.000.000.000.000 (1016) neutrinos, which passed his detector, from an extragalactic supernovaexplosion. • Birth of neutrino astronomy

  4. Neutrinos and the sources of the UHECR

  5. Neutrinos as cosmic messengers Physics of astrophysical neutrino sources = physics ofcosmic ray sources

  6. galactic extragalactic Evidence for proton acceleration, hints for neutrino production • Observation of cosmic rays: need to accelerate protons/hadrons somewhere • The same sources should produce neutrinos: • in the source (pp, pg interactions) • Proton (E > 6 1010 GeV) on CMB  GZK cutoff + cosmogenic neutrino flux UHECR(heavy?) In the source:Ep,max up to 1012 GeV? GZKcutoff?

  7. Cosmic ray source(illustrative proton-only scenario, pg interactions) If neutrons can escape:Source of cosmic rays Neutrinos produced inratio (ne:nm:nt)=(1:2:0) Delta resonance approximation: Cosmogenic neutrinos p+/p0 determines ratio between neutrinos and high-E gamma-rays High energetic gamma-rays;typically cascade down to lower E Cosmic messengers

  8. The two paradigms for extragalactic sources:AGNs and GRBs • Active Galactic Nuclei (AGN blazars) • Relativistic jets ejected from central engine (black hole?) • Continuous emission, with time-variability • Gamma-Ray Bursts (GRBs): transients • Relativistically expanding fireball/jet • Neutrino production e. g. in prompt phase(Waxman, Bahcall, 1997) Nature 484 (2012) 351

  9. Neutrino emission in GRBs Prompt phasecollision of shocks: dominant ns? (Source: SWIFT)

  10. Neutrino detection:Neutrino telescopes • Example: IceCube at South PoleDetector material: ~ 1 km3 antarctic ice • Completed 2010/11 (86 strings) • Recent data releases, based on parts of the detector: • Point sources IC-40 [IC-22]arXiv:1012.2137, arXiv:1104.0075 • GRB stacking analysis IC-40+IC-59Nature 484 (2012) 351 • Cascade detection IC-22arXiv:1101.1692 • Have not seen anything (yet) • What does that mean? • Are the models too simple? • Which parts of the parameter space does IceCube actually test? • Particle physics reason? http://icecube.wisc.edu/ http://antares.in2p3.fr/

  11. Simulation of sources

  12. Different interaction processes Resonances Differentcharacteristics(energy lossof protons;energy dep.cross sec.) Dres. Multi-pionproduction er (Photon energy in nucleon rest frame) Direct(t-channel)production (Mücke, Rachen, Engel, Protheroe, Stanev, 2008; SOPHIA;Ph.D. thesis Rachen)

  13. Source simulation: pg(particle physics) • D(1232)-resonance approximation: • Limitations: • No p- production; cannot predict p+/ p- ratio (Glashow resonance!) • High energy processes affect spectral shape (X-sec. dependence!) • Low energy processes (t-channel) enhance charged pion production • Solutions: • SOPHIA: most accurate description of physicsMücke, Rachen, Engel, Protheroe, Stanev, 2000Limitations: Monte Carlo, slow; helicity dep. muon decays! • Parameterizations based on SOPHIA • Kelner, Aharonian, 2008Fast, but no intermediate muons, pions (cooling cannot be included) • Hümmer, Rüger, Spanier, Winter, ApJ 721 (2010) 630Fast (~1000 x SOPHIA), including secondaries and accurate p+/ p- ratios • Engine of the NeuCosmA („Neutrinos from Cosmic Accelerators“) software+ time-dependent codes from:Hümmer, Rüger, Spanier, Winter, ApJ 721 (2010) 630

  14. “Minimal“ (top down) n model Q(E) [GeV-1 cm-3 s-1] per time frameN(E) [GeV-1 cm-3] steady spectrum Dashed arrows: include cooling and escape Input: B‘ Opticallythinto neutrons from: Baerwald, Hümmer, Winter,Astropart. Phys. 35 (2012) 508

  15. Kinetic equations • Energy losses in continuous limit:b(E)=-E t-1lossQ(E,t) [GeV-1 cm-3 s-1] injection per time frameN(E,t) [GeV-1 cm-3] particle spectrum including spectral effects • For neutrinos: dN/dt = 0 (steady state) • Simple case: No energy losses b=0 Injection Energy losses Escape often: tesc ~ R

  16. Typical source models • Protons typically injected with power law (Fermi shock acceleration!) • Target photon field typically: • Put in by hand (e.g. obs. spectrum: GRBs) • Thermal target photon field • From synchrotron radiation of co-accelerated electrons/positrons (AGN-like) • From a more complicated combination of radiation processes ?

  17. Peculiarity for neutrinos: Secondary cooling Example: GRB Decay/cooling: charged m, p, K • Secondary spectra (m, p, K) loss-steepend above critical energy • E‘c depends on particle physics only (m, t0), and B‘ • Leads to characteristic flavor composition and shape • Very robust prediction for sources? [e.g. any additional radiation processes mainly affecting the primaries will not affect the flavor composition] • The only way to directly measure B‘? nm Pile-up effect Flavor ratio! Spectralsplit E‘c E‘c E‘c Adiabatic Baerwald, Hümmer, Winter,Astropart. Phys. 35 (2012) 508; also: Kashti, Waxman, 2005; Lipari et al, 2007

  18. Example:Neutrinos from GRBs

  19. The “magic“ triangle g Satellite experiments(burst-by-burst) Model-dependent prediction GRB stacking(next slides) Partly common fudgefactors: how many GRBsare actually observable?Baryonic loading? … ?(energy budget, CR “leakage“, quasi-diffuse extrapolation, …) Robust connectionif CRs only escape as neutrons produced in pg interactions CR n Neutrino telescopes (burst-by-burst or diffuse) CR experiments (diffuse)

  20. g GRB stacking n (Source: IceCube) • Idea: Use multi-messenger approach • Predict neutrino flux fromobserved photon fluxesevent by event (Source: NASA) Coincidence! Neutrino observations(e.g. IceCube, …) GRB gamma-ray observations(e.g. Fermi GBM, Swift, etc) Observed:broken power law(Band function) (Example: IceCube, arXiv:1101.1448) E-2 injection

  21. Gamma-ray burst fireball model:IC-40 data meet generic bounds • Generic flux based on the assumption that GRBs are the sources of (highest energetic) cosmic rays(Waxman, Bahcall, 1999; Waxman, 2003; spec. bursts:Guetta et al, 2003) Nature 484 (2012) 351 IC-40+59 stacking limit • Does IceCube really rule out the paradigm that GRBs are the sources of the ultra-high energy cosmic rays?

  22. IceCube method …normalization • Connection g-rays – neutrinos • Optical thickness to pg interactions:[in principle, lpg ~ 1/(ngs); need estimates for ng, which contains the size of the acceleration region] ½ (charged pions) x¼ (energy per lepton) Energy in protons Energy in neutrinos Fraction of p energyconverted into pions fp Energy in electrons/photons (Description in arXiv:0907.2227; see also Guetta et al, astro-ph/0302524; Waxman, Bahcall, astro-ph/9701231)

  23. IceCube method … spectral shape • Example: 3-ag 3-bg 3-ag+2 First break frombreak in photon spectrum(here: E-1 E-2 in photons) Second break frompion cooling (simplified)

  24. Revision of neutrino flux predictions Analytical recomputationof IceCube method (CFB): cfp: corrections to pion production efficiency cS: secondary cooling and energy-dependenceof proton mean free path(see also Li, 2012, PRD) G ~ 1000 G ~ 200 Comparison with numerics: WB D-approx: simplified pg Full pg: all interactions, K, …[adiabatic cooling included] (Baerwald, Hümmer, Winter, Phys. Rev. D83 (2011) 067303;Astropart. Phys. 35 (2012) 508; PRL, arXiv:1112.1076)

  25. Consequences for IC-40 analysis • Differential limit illustrates interplay with detector response • Shape of prediction used to compute sensitivity limit • Peaks at higher energies IceCube @ n2012:observed two events~ PeV energies from GRBs? (Hümmer, Baerwald, Winter, Phys. Rev. Lett. 108 (2012) 231101)

  26. Systematics in aggregated fluxes • z ~ 1 “typical“ redshift of a GRB • Neutrino flux overestimated if z ~ 2 assumed(dep. on method) • Peak contribution in a region of low statistics • Systematical error on quasi-diffuse flux (90% CL) ~ 50% for 117 bursts, [as used in IC-40 analysis] Weight function:contr. to total flux Distribution of GRBsfollowing star form. rate (strongevolutioncase) 10000 bursts (Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508)

  27. Quasi-diffuse prediction • Numerical fireball model cannot be ruled out with IC40+59 for same parameters, bursts, assumptions • Peak at higher energy![optimization of future exps?] “Astrophysical uncertainties“:tv: 0.001s … 0.1sG: 200 …500a: 1.8 … 2.2ee/eB: 0.1 … 10 (Hümmer, Baerwald, Winter, Phys. Rev. Lett. 108 (2012) 231101)

  28. Comparison of methods/models from Fig. 3 of Hümmer et al, arXiv:1112.1076, PRL;origin of target photons not specified from Fig. 3 of Nature 484 (2012) 351; uncertainties from Guetta, Spada, Waxman, Astrophys. J. 559 (2001) 2001:target photons from synchrotron emission/inverse Compton completely model-independent (large collision radii allowed): He et al, Astrophys. J. 752 (2012) 29 (P. Baerwald)

  29. Particle physics depletion/reason:Neutrino decay? Decay hypothesis: n2 and n3 decay with lifetimes compatible with SN 1987A bound • Reliable conclusions from astrophysical neutrino flux bounds require cascade (ne) measurements! (from: Baerwald, Bustamante, Winter, 2012)

  30. Neutrinos-cosmic rays n CR • If charged p and n produced together: • GRB not exclusive sources of UHECR? CR leakage? Consequences for (diffuse) neutrino fluxes Fit to UHECR spectrum (Ahlers, Gonzalez-Garcia, Halzen, Astropart. Phys. 35 (2011) 87)

  31. Neutrino oscillations in the Sun

  32. Constant vs. varying matter density • For constant matter density:H is the Hamiltonian in constant density • For varying matter density: time-dep. Schrödinger equation (H explicitely time-dependent!) Transition amplitudes; yx: mixture ym and yt

  33. Adiabatic limit Amplitudes of mass eigenstates in matter • Use transformation: … and insert into time-dep. SE […] • Adiabatic limit: • Matter density varies slowly enough such that differential equation system decouples!

  34. Propagation in the Sun • Neutrino production as ne (fusion) at high ne • Neutrino propagates as mass eigenstate in matter (DE decoupled); x: phase factor from propagation • In the Sun: ne(r) ~ ne(0) exp(-r/r0) (r0 ~ Rsun/10); therefore density drops to zero! • Detection as electron flavor: Disappearance of solarneutrinos!

  35. Solar oscillations • In practice: A >> 1 only for E >> 1 MeV • For E << 1 MeV: vacuum oscillations Averaged vacuumoscillations:Pee=1-0.5 sin22q AdiabaticMSW limit:Pee=sin2q ~ 0.3 Borexino, PRL 108 (2012) 051302

  36. Some additional comments… on stellar environments • How do we know that the solarneutrino flux is correct? • SNO neutral current measurement • Why are supernova neutrinos so different? • Neutrino densities so high that neutrino-self interactions • Leads to funny „collective“ effects, as gyroscope B. Dasgupta

  37. Summary Are GRBs the sources of the UHECR? • Gamma-rays versus neutrinos • Revised model calculations release pressure on fireball model calculations • Baryonic loading will be finally constrained (at least in “conventional“ internal shock models) • Neutrinos versus cosmic rays • Cosmic ray escape as neutrons under tension • Cosmic ray leakage? • Not the only sources of the UHECR? • Solar neutrinos: MSW effect credible thanks to Borexino g n CR

More Related