1 / 48

Atomic Structure

Atomic Structure. Nuclear and Electronic Organization. Atoms. Notion dates from ca 400 BCE - Democritus Notion lay dormat 2200 years until early 1800’s - John Dalton. John Dalton. 1766-1844. Dalton’s Theory. Explained Conservation of Mass in chemical and physical changes

tehya
Download Presentation

Atomic Structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Atomic Structure Nuclear and Electronic Organization

  2. Atoms • Notion dates from ca 400 BCE - Democritus • Notion lay dormat 2200 years until early 1800’s - John Dalton

  3. John Dalton 1766-1844

  4. Dalton’s Theory • Explained Conservation of Mass in chemical and physical changes • Accounted for differences between elements and compounds • Accounted for constant composition of compound substances. Water, eg, always 88.9% oxygen and 11.1% hydrogen

  5. Atoms • Incredibly small • Sub-microscopic • Yet much is understood, measurable of sub-atomic structure

  6. Two Major Zones or Regions • Nucleus • Dense, central core • Almost all of the atomic mass • only about 1-trillionth of the space or volume • Extranuclear, or electron, region • Most of the atomic volume • Almost none of the atom’s mass • Almost “empty space”

  7. Nucleus Extra-nuclear (electron) region Atom

  8. Electrons negative (-1) negligible mass (0.0 amu) outside nucleus Protons positive (+1) part of nucleus 1.0 amu Neutrons neutral part of nucleus 1.0 amu Three Sub-atomic Particles

  9. Atoms of Various Elements • Same no. of p+ for given element • equal to atomic number • equal to e- no. for neutral atoms • Neutron nos. may vary for atoms of same element • isotopes • average no. of neutrons determinable from atomic mass info

  10. 17 Cl 35.453 No. of protons Average mass, average total of p+ & n

  11. No. of protons Average no neutrons  18.5 17 Cl 35.453

  12. Cl-35or Cl-37or 35 37 Cl Cl 17 17 17 p+ 18n 17 p+ 20n Two Isotopes for Cl Mass = 37 amu ca 25% of isotopes Mass = 35 amu ca 75% of isotopes Average mass = 35.453

  13. No. of protons Average no neutrons  12.3053 12 Mg 24.3050

  14. Mg-26or Mg-24or Mg-25or 25 24 26 Mg Mg Mg 12 12 12 12 p+ 12n 12 p+ 14n 12 p+ 13n Three Isotopes for Mg Mass = 26 amu ca 11% of isotopes Mass = 25 amu ca 10% of isotopes Mass = 24 amu ca 79% of isotopes Average mass = 24.3050

  15. Electron Organization • Outside nucleus • Grouped in increasing levels of energy • Lowest-energy e- nearest nucleus • Limited no. e- at each level (more at higher levels) • Transitions of e- between levels absorb or release energy

  16. Energy Levels Levels approach a continuum for most atoms beyond then 10th level. 1 2 3 4 5 6 7 8, 9, 10, etc

  17. Electron Transitions Energy absorbed • • 1 2 3 4 5 6 7 8, 9, 10, etc

  18. Electron Transitions • • Energy released 1 2 3 4 5 6 7 8, 9, 10, etc

  19. Electron Transitions • Give rise to absorption and emission spectra • Only certain colors (or wavelengths) observed for given element • Spectrum (color set) for each element can be used to identify element in unknown sample

  20. Spectra

  21. Spectra

  22. Spectra

  23. Maximum Occupancy of Energy Levels • Level 1 -- 2 e- • Level 2 -- 8 e- • Level 3 -- 18 e- • Level 4 -- 32 e- • … • Level n -- 2 x n2 e- • Actual occupancy  32 e-

  24. Energy Levels 18e- 32e- 8e- Levels approach a continuum for most atoms beyond then 10th level. 2e- 1 2 3 4 5 6 7 8, 9, 10, etc

  25. Li 2, 1 Same as: 3 Lithium 2e- 1e-

  26. N 2, 5 Same as: 7 Nitrogen 2e- 5e-

  27. Same as: Ne 2, 8 10 Neon 2e- 8e- Largest atom for which all electrons exist only at main levels 1 and 2.

  28. Same as: Na 2, 8, 1 11 Sodium 1e- 2e- 8e- Smallest atom for which an electron must exist at main level 3.

  29. Same as: Ar 2, 8, 8 18 Argon 8e- 2e- 8e- Largest atom for which all electrons can exist within first three main levels.

  30. Atoms with At. No. > 18 Although level #3 can have 18 total electrons, level #4 must contain next 2 electrons; additional electrons after the 20th go back to level #3 (up to 18, maximum). 8e- 2e- “Filling order”: Level 1 - 2e- Level 2 - 8e- Level 3 - 8e- Level 4 - 2e- Level 3 - up to 18 total 8e-

  31. Same as: K 2, 8, 8, 1 19 Potassium 1e- 8e- 2e- 8e- Smallest atom for which energy level 4 must be occupied.

  32. Fe 2, 8, 14, 2 26 Iron 2e- 14e- Same as: 2e- 8e- Filling: 1st 18e-: 2,8,8 Next 2e-: 2,8,8,2 Last 6e-: 2, 8, 14, 2

  33. Same as: Zn 2, 8, 18, 2 30 Zinc 2e- 18e- 2e- 8e- Filling: 1st 18e-: 2,8,8 Next 2e-: 2,8,8,2 Last 10e-: 2, 8, 18, 2

  34. Good News! • Our requirements for electron configurations are - • limited to 30 e-, total (Zn) • involve main levels only (no s, p, d, f “orbital” or “subshell” configurations required) • Much of electron configuration determinable from Periodic Table

  35. Periodic Table of the Elements 1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 104 105 106 107 108 109 110 111 112 VIII I V III IV VI VII II 1 2 3 4 5 6 7

  36. “Periodic” Properties • Properties of the elements that change periodically (cyclically) as the atomic number increases. • Examples • Chemical reactivity • Atomic size (diameter, radius, eg.) • Ionization energy • Electronegativity • Metallic/non-metallic character

  37. Chemical Reactivity • Properties are similar for elements in same family or vertical group. • Group I: Li, Na, K, etc • Group II: Be, Mg, Ca, etc • Group VII: F, Cl, Br, I, etc • Similar kinds of reactions • Similar kinds of compounds

  38. Requires warm water; sluggish Similar Reactions Vigorous in cool water; may explode Consider Group I: Li, Na, K, Rb, Cs Explosion likely; very dangerous Li + H2O  explosive gas, alkaline solution Na + H2O  explosive gas, alkaline solution K + H2O  explosive gas, alkaline solution Rb + H2O  explosive gas, alkaline solution Cs + H2O  explosive gas, alkaline solution Run! Call 911 Our condolences.

  39. Similar Compounds Again, consider Group I: Li, Na, K, Rb, Cs “Sulfides”: Li2S, Na2S, K2S, Rb2S, Cs2S “Chlorides”: LiCl, NaCl, KCl, RbCl, CsCl “Phosphates”: Li3PO4,Na3PO4, K3PO4, Rb3PO4, etc

  40. Similar Compounds For Group II: Be, Mg, Ca, Sr, Ba “Sulfides”: BeS, MgS, CaS, SrS, BaS “Chlorides”: BeCl2, MgCl2, CaCl2, SrCl2, BaCl2 “Phosphates”: Be3(PO4)2, Mg3(PO4)2, Ca3(PO4)2, etc

  41. 1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 104 105 106 107 108 109 110 111 112 Atomic Size small LARGE

  42. Li 2, 1 3 Same as: 2e- 1e- Na 2, 8, 1 11 1e- Same as: 2e- 8e- K 2, 8, 8,1 1e- 19 8e- Same as: 2e- 8e- Atomic Diameter Increases going down a “family” or group. More energy levels occupied.

  43. 3+ 6+ 9+ 2e- 2e- 2e- 4e- 1e- 7e- Same as: Same as: Same as: Li 2, 1 C 2, 4 F 2, 7 3 6 9 Atomic Diameter Diameter shrinks going rightward across a period.

  44. Atomic Diameter Li 2, 1 3 Same as: 2e- 1e- 3+ Approx +1 at outer level Na 2, 8, 1 11 1e- Same as: 2e- 11+ 8e- Approx +1 at outer level 8e- K 2, 8, 8,1 19 Same as: 1e- 19+ 2e- 8e- Approx +1 at outer level “Shielding by “core” electrons keeps effective charge at outer level about the same within a family or group.

  45. Ionization Energy (Potential) • Minimum energy required to remove electron from gaseous atom: X(g) + I.E.  e- + X+(g) • I.E. is high for atoms which hold very tightly to their outer electrons • non-metals have high I.E.’s; metals, low • highest for smallest atoms. Ion -- at atom (or group of atoms) with net charge

  46. 1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 104 105 106 107 108 109 110 111 112 Ionization Energy Small size LARGE I.E. LARGE SIZE small I.E.

  47. Electronegativity • Tendency of atom to hold to its electron when sharing electrons with neighboring atom. • Generally, follow same trends as I.E. • Important for bonding polarity (next unit of study)

  48. Metallic Character 1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne Non-metals 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe Metals 55 Cs 56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 111 112

More Related