1 / 48

Lotus Lola

Осцилации на неутрината: феноменология и експериментални наблюдения (Лекция 3 ). Lotus Lola. Lotus Lola. Матрица на Pontecorvo-Maki-Nakagawa-Sakata. 4 реални параметъра : 3 ъгли на смесване и една фаза δ. състояния :. където. и. n e. n 1. n 2. n m. n 3. n t. Normal. Inverted.

alebowitz
Download Presentation

Lotus Lola

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Осцилации на неутрината:феноменология и експериментални наблюдения(Лекция 3) Lotus Lola Lotus Lola

  2. Матрица на Pontecorvo-Maki-Nakagawa-Sakata 4 реални параметъра: 3 ъгли на смесванеи една фазаδ. състояния: където и

  3. ne n1 n2 nm n3 nt

  4. Normal Inverted • Global fit provides: • sin2q12=0.320.23 • Dm122 =7.60.20×10-5 eV2 • sin2q23=0.500.063 • Dm232=2.40.15×10-3 eV2 • Unknown quantities: • sin2q13< 0.031 (@90%CL), • Mass hierarchy: sign Dm132 • CP violation phase d

  5. T2K Future Long Baseline Accelerator Neutrino Experiments NOvA

  6. Measurement ne n3 nt nm Dm2atm n2 n1 Dm2sun Oscillation Probabilities when • q23: nm disappearance ~1 common • q13: ne appearance ~0.5 • d: CP violation (in future) ~0.18 (sin22q13=0.1) ~0.58 (sin22q13=0.01) 7 • P(nm➝ne) at the 1st and 2nd osc. peaks could be different by d!

  7. T2K Neutrino Beams(to Kamioka) Main ring J-PARC Facility (KEK/JAEA) South to North Construction JFY2001~2008 Design Intensity 750kW • J-PARC starts operation toward the world highest intensity proton accelerator. • The high power beam could produce the intense neutrino beam. Bird’s eye photo in January of 2008

  8. Osc. Prob.@ Dm2=3x10-3eV2 Off-axis beam configuration OA0° OA2° • The n beam energy is tuned at the oscillation maximum. • Higher signal yield. • Less background from high energy neutrinos. nm flux OA2.5° OA3° • Quasi Monochromatic Beam Intense and high-quality neutrino beam 9

  9. Neutrino event timing ( INGRID) Near Detectors

  10. Super-K(Far detector) neutrino events LE: Low energy triggered events OD: Outer detector events FC: Fully contained events FC OD LE FC Clean beam timing structure confirmed in FC events Twenty-two FC events observed by Mid. May Non-beam BG estimated to be <10-3evts 11

  11. T2K Physics Run begins in 2010. ~100kW ~50kW  Beam Power Delivered POT: 3.35×1019 (3.28×1019 for physics) Continuous run @ ~50kW level Trial up to 100kW successful. 12

  12. Expected Sensitivity of T2K nm➝ nm disappearance nm➝ ne appearance T2K Full Statistic goal: 3.75MW×107 sec. 13

  13. Expected Sensitivity of NOvA

  14. Future Reactor Neutrino Experiments

  15. Measurement

  16. FAR and NEAR FAR only

  17. 1st step: transition era • Improve the precision on the atmospheric parameters looking at νμ disappearance • Confirm (atm. osc)=(νμ → ντ ) and first look at νμ → νe Ongoing: 2005-2012 • Conventional beams • MINOS • OPERA • Reactors • D-Chooz • RENO • DayaBay • Super-beams • T2K • NOvA Under construction: 2008-2015 • 2 nd step: θ13 era • Demonstrate visibility of sub-leading transitions: • νμ → νe , νe →νe • Explore θ13 down to 20 (today <100) 3 rd step: precision era To be prepared: 2015-2030 θ13> 3 0 θ13< 3 0 Known by 2012 Super-beams II Beta-beams Neutrino Factory • Existing facilities could reach it • … but with very small sensitivity to δCP and mass hierarchy • No access for ongoing experiments at that time Cleaner and more intense beams + bigger detectors

  18. 3 rd step: Precision era Channels of interest • Disappearance for Dm312, q23: nm nm • Appearance for q13, CPV, MH: • Golden: ne nm or anti-nm anti-ne; • Silver: ne nt ; • Platinum: nm ne ; • Neutral currents for new physics

  19. Peτ Antineutrinos: Magic baseline: Silver: Golden & Silver

  20. Solving solution degeneracy Linevs Dashed = neutrinos and anti-neutrinos red vs blue = different baseline and energy bin (most powerful is around matter resonance @ ~12 GeV) red vs blue = golden and silver

  21. Example: CPV discovery • Any value of dCP(except for 0 and p)violates CP • Sensitivity to CPV:Exclude CP-conservingsolutions 0 and pfor any choiceof the other oscillationparameters in their allowed ranges

  22. CP violation discovery example … in (true) sin22q13 and dCP Best performanceclose to max. CPV (dCP = p/2 or 3p/2) Sensitive region as a function of trueq13 anddCP dCP values now stacked for each q13 No CPV discovery ifdCP too close to 0 or p No CPV discovery forall values of dCP 3s Read: If sin22q13=10-3, we expect a discovery for 80% of all values of dCP

  23. Decay Pipe Detector Target Horns q Super-beams • Super-beams: 1-4 MW proton intensity to generate beam of neutrinos from the decays of pion and kaons. ne’s: m+→e+nenm K+→p0e+ne nm’s: p+→m+nm K+→m+nm • Off-axis for better determination neutrino energy. Nona off-axis (~750 km) or T2K (~250 km) Off-axis: narrower energy band

  24. β- beams • Beta beam: beta decay of accelerated radioactive nuclei (P. Zucchelli, Phys. Lett. B, 532 (2002), 166-172.) • He-6 for neutrino production: g ~ 100 • Ne-18 for antineutrino production: g ~ 60 Only one neutrino species  do not need magnetic detector! High  Eurisol study Low 

  25. Neutrino Factory

  26. IDS-NF: • Initiative from ~ 2007-2012 to present a design report, schedule, cost estimate, risk assessment for a neutrino factory.

  27. Target: Em ~ 25 GeV, 2.5 1020 usful muon decays/polarity/ring/year = 1021 total

  28. Discovery potential

  29. From neutrino factory to muon collider

  30. Eкспериментът MICE

  31. Йонизационно охлаждане: • Чрез енергетични загуби мюонът губи надлъжен и напречен импулс (px, py, pz). • Радиочестотни резонатори възстановяват надлъжния импулс (pz).

  32. Близък детектор

  33. Квази-еластично разсейване на неутрина върху електрони • Разпределения по енергия на неутрината, попадащи в близкия детектор. • Процеси на квази-еластично разсейване на неутрина върху електрони. • Квази-еластичното разсейване на неутрина върху електрони е праговпроцес с праг ~11 GeV.

  34. Разделяне на сигнала от фона • Ако искаме да измерваме потока неутрина чрез квази-еластично разсейване на неутрина върху електрони, то близкият детектор трябва да може да различава тези две събития. Дълбоко-нееластично разсейване върху нуклон Квази-еластично разсейване върху електрон за 20 GeV νμто е ~10-3отσtotal(νN)

  35. Отделяне на сигнала от фона

More Related