160 likes | 360 Views
Introduction to Belief Propagation. B.S student YeongWon Kim. Markov Process. Markov Property Markov Chain Hidden Markov Model Markov Random Field Belief Propagation. Markov Chain. HMM(Hidden Markov Model). Find probabilities of states with given observations. MRF(Markov Random Field).
E N D
Introduction to Belief Propagation B.S student YeongWon Kim
Markov Process • Markov Property • Markov Chain • Hidden Markov Model • Markov Random Field • Belief Propagation
HMM(Hidden Markov Model) • Find probabilities of states with given observations.
MRF(Markov Random Field) • HMM • MRF
y1 y2 x1 x2 yi xi yn xn MRF formulation • Question: What are the marginal distributions for xi, i = 1, …,n? P(x1, x2, …, xn) = (1/Z) (ij) (xi, xj) i (xi, yi) MLRG
Belief Propagation • Belief • Marginal distribution • Message • Joint distribution -Sum-product -Max-product
Message Updating • Message mij from xi to xj : what node xi thinks about the marginal distribution of xj yi yj N(i)\j xi xj mij(xj) = (xi) (xi, yi)(xi, xj)kN(i)\jmki(xi) • Messages initially uniformly distributed MLRG
Message Updating Node P Node Q L1 L1 L2 L2 L3 L3 mij(xj) = (xi) (xi, yi)(xi, xj) kN(i)\jmki(xi) Ln Ln
Belief • Belief b(xj): what node xj thinks its marginal distribution is N(j) yj xj b(xj) = k (xj, yj)qN(j)mqj(xj) MLRG
Optimization for MRF • Convert to energy domain • Maximizing
Definitions of Message and Belief mij(xj) = (xi) (xi, yi)(xi, xj) kN(i)\jmki(xi) b(xj) = k (xj, yj)qN(j)mqj(xj) P(x1, x2, …, xn) = (1/Z) (ij) (xi, xj) i (xi, yi)
Pseudocode • Initialize all messages uniformly. • For i from 1 to number of iterations • Update all messages. • End • For each nodes, find a label that has maximum belief.
Reference • http://www.ski.org/Rehab/Coughlan_lab/General/TutorialsandReference/BPtutorial.pdf • http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/ • Wikipedia • Efficient Belief Propagation for Early Vision • Understanding Belief Propagation and its Generalizations • http://www.stats.ox.ac.uk/~steffen/seminars/waldmarkov.pdf