1 / 54

Kansdefinitie van Laplace

Kansdefinitie van Laplace. aantal gunstige uitkomsten aantal mogelijke uitkomsten. P(gebeurtenis) = je mag deze regel alleen gebruiken als alle uitkomsten even waarschijnlijk zijn

anka
Download Presentation

Kansdefinitie van Laplace

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kansdefinitie van Laplace aantal gunstige uitkomsten aantal mogelijke uitkomsten P(gebeurtenis) = je mag deze regel alleen gebruiken als alle uitkomsten even waarschijnlijk zijn bij een verkeerslicht zijn de uitkomsten rood, oranje en groen niet even waarschijnlijk, want het verkeerslicht staat langer op rood dan op oranje dus P(oranje) is niet gelijk aan ⅓ bij het gooien met een dobbelsteen is elk van de 6 uitkomsten even waarschijnlijk dus P(meer dan 4 ogen) = 2/6 = ⅓ hierbij zijn 5 en 6 ogen gunstig rond kansen af op 3 decimalen, tenzij anders wordt gevraagd

  2. De complementregel P(gebeurtenis + P(complement-gebeurtenis) = 1 P(gebeurtenis) = 1 – P(complement-gebeurtenis) P(minder dan 8 witte) = P(0 w) + P(1 w) + P(2 w) + P(3 w) + P(4 w) + P(5 w) + P(6 w) + P(7 w) = 1 – P(8 witte) 11.1

  3. Het vaasmodel bij veel kansberekeningen kan het handig zijn het kansexperiment om te zetten in het pakken van knikkers uit een geschikt samengestelde vaas  vaasmodel 11.1

  4. 24 5 ≈ 0,298 a P(geen wagens met dezelfde lampen) = b P(minstens twee met defecte lampen) = 1 – (P(geen) + P(één)) = = 1 – c P(meer dan drie met goede lampen) = P(4) + P(5) = = 30 5 24 5 61 24 4 . ≈0,254 + 30 5 30 5 244 245 6 1 . ≈ 0,746 + 30 8 30 5

  5. 43 3 ≈ 0,630 a P(niets wint) = b P(100 euro) = P(1 x € 100) + P(2 x € 50) = c P(20 euro) = P(2 x € 10) = d P(minstens 30 euro) = 1 – P(minder dan 30 euro) = 1 – P(niets) – P(10 euro) – P(20 euro) = = 1 - 50 3 11 43 2 22 43 1 . . ≈ 0,048 + 50 3 50 3 42 43 1 . ≈ 0,013 50 3 43 3 41 43 2 42 43 1 . . - - ≈ 0,173 50 3 50 3 50 3

  6. Kansbomen • Bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken. • Je gaat als volgt te werk: • Zet de uitkomsten bij de kansboom. • Bereken de kansen van de uitkomsten die je nodig hebt. • Vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst. 11.2

  7. opgave 19 a Vul in. b P (Sander wint in 3 beurten) = P (rswrrs) = c Vul in.

  8. opgave 24 • a Vul in. • b P(Anton pakt zwarte knikker) = • P(mz) = = 0,2 • c P(Anton pakt rode knikker) = • P(krI) + P(mrII) = ≈ 0,586 • d P(Anton pakt twee keer wit) = • P(kwkw) = ≈ 0,036 • P(Anton pakt twee keer rood) = • P(krIkrII) + P(krImrII) + P(mrIIkrI) + P(mrIImrII) = • ≈ 0,318 + + + +

  9. opgave 26 0,01 0,99 0,70 0,30 0,20 0,80 0,792 0,007 0,003 0,198

  10. opgave 26 0,01 0,99 9900 100 0,80 0,70 0,30 0,20 7920 70 30 1980

  11. In een vaas zitten 50 knikkers, waarvan er p rood zijn. a P(rr) = b P(rode en witte) = 2 · P(rw) = De tweede rode knikker pak je uit een vaas met 50 – 1 = 49 knikkers, waarvan er p – 1 rood zijn. Er zijn 50 – p witte knikkers

  12. Toevalsvariabelen Bij het kansexperiment uit opgave 31 wordt aselect (= willekeurig) een leerling uit de klas gekozen. X = de leeftijd van de leerling. Omdat de waarde van X afhangt van het toeval heet X een toevalsvariabele. complementregel P(Y ≥ 1) = 1 – P(Y = 0) somregel  P(Y < 2) = P(Y = 0) + P(Y = 1) 11.3

  13. voorbeeld • In een grabbelton zitten 20 doosjes. • In 8 van deze doosjes zit een briefje van 10 euro, • de overige 12 doosjes zijn leeg. • Arjan pakt 2 doosjes uit de grabbelton. • X = het totale bedrag in de 2 doosjes. • a P(X = 20) • = P(2 doosjes met 10 euro) • = ≈ 0,147 • b P(X > 0) • = 1 – P(X = 0) • = 1 – P(2 lege doosjes) • = 1 - ≈ 0,653 8 2 20 2 12 2 20 2

  14. Kansverdelingen De kansverdeling van X is een tabel waarin bij elke waarde van X de bijbehorende kans is vermeld. De som van de kansen in een kansverdeling is altijd 1. kanshistogram 11.3

  15. opgave 38 8 4 kans ≈ 0,141 a P(X = 0) = P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 12 4 8 3 4 1 · ≈ 0,453 12 4 4 2 8 2 · ≈ 0,339 12 4 4 3 8 1 · ≈ 0,065 12 4 x O 0 4 1 2 3 4 4 -- b) P(Y = 3) = P(rrr) = ≈ 0,002 12 4

  16. De verwachtingswaarde Werkschema : het berekenen van de verwachtingswaarde E(X) 1 Stel de kansverdeling van X op. 2 Vermenigvuldig elke waarde van X met de bijbehorende kans. 3 Tel de uitkomsten op.

  17. a U = uitbetaling per lot E(U) = 0 · 0,96 + 10 · 0,03 + 50 · 0,01 = 0,80 De verwachtingswaarde van de uitbetaling per lot is € 0,80. b W = winst = uitbetaling - 2 E(W) = E(U) – 2 = 0,80 – 2 = -1,20 Dus de verwachtingswaarde van de winst is - € 1,20 per lot. c W = winst = uitbetaling - 0 E(W) = E(U) – 0 = 0,80 – 0 = 0,80 Een lot moetdan € 0,80 kosten. 3 keer tweede prijs van de 100 1 keer eerste prijs van de 100 4 prijzen, 96 keer niet prijs van de 100

  18. W = winst = 0,50 – uitbetaling P(W = -0,50) = P(2 bellen) = = 0,1875 P(W = -1) = P(2 bananen) = = 0,140625 P(W = -2) = P(2 appels) = = 0,03125 P(W = 0,50) = 1 – 0,1875 – 0,140625 – 0,03125 = 0,640625 E(W) = -2 · 0,03125 + -1 · 0,140625 + -0,50 · 0,1875 + 0,50 · 0,640625 = -0,02 De verwachtingswaarde van de winst per spelvoor de eigenaar is € 0,02.

  19. Succes en mislukking De complement-gebeurtenis van succes. De kans op succes geven we aan met p. 11.4

  20. Binomiaal kansexperiment • Bij een binomiaal kansexperiment is : • n het aantal keer dat het experiment wordt uitgevoerd • X het aantal keer succes • p de kans op succes per keer • De kans op k keer succes is gelijk aan • P(X = k) = · pk · (1 – p)n – k. n k 11.4

  21. 4 1 6 2 · • a p = P(2 rode en 1 witte) = = 0,5 • b p = P(3 rode) + P(3 witte) = = 0,2 10 3 4 3 6 3 + 10 3 10 3

  22. Binomiaal kansexperiment • Bij een binomiaal kansexperiment is : • n het aantal keer dat het experiment wordt uitgevoerd • X het aantal keer succes • p de kans op succes per keer • De kans op k keer succes is gelijk aan • P(X = k) = · pk · (1 – p)n – k. n k

  23. a n = 6 en p = = 0,4 P(X = 4) = · 0,44 · 0,62≈ 0,138 b n = 12 en p = = 0,9 P(Y = 10) = · 0,910 · 0,12 ≈ 0,230 6 4 12 10

  24. Toevalswandelingen 2 opgave 58 3 4 5 2 • a X = aantal keer in de richting ‘links’. • X is binomiaal verdeeld met n = 9 en p = ½. • P(X = 4) = ≈ 0,246 • b P(X = 6) = ≈ 0,164 • c P(via postk. bij museum) = ≈ 0,117 • d P(via postk. bij kerk) = ≈ 0,020 3 3 _ 4 _ 5 1 2 1 2 9 4 · · 6 4 2 2 _ _ 6 3 9 6 1 2 1 2 · · 2 3 2 2 _ _ _ _ _ _ 5 2 1 2 1 2 1 2 1 2 4 2 · · · · · 4 3 _ 2 _ _ 5 2 1 2 1 2 1 2 4 4 · · · ·

  25. De notaties binompdf(n, p, k) en binomcdf(n, p, k) 11.4

  26. 11.4

  27. opgave 60 0,4 a X = het aantal keer banaan. P(X = 5) = binompdf(10, 0.4, 5) ≈ 0,201 b X = het aantal keer appel. P(X = 3) = binompdf(18, 0.2, 3) ≈ 0,230 c X = het aantal keer appel. P(X ≤ 2) = binomcdf(20, 0.2, 2) ≈ 0,206 d X = het aantal keer banaan P(X = 4) = binompdf(5, 0.4, 4) ≈ 0,077 0,2

  28. Binomiale kansen berekenen Werkschema : het maken van opgaven over binomiale kansexperimenten 1 Omschrijf de betekenis van de toevalsvariabele X. 2 Noteer de gevraagde kans met X en herleid deze kans tot een vorm met binompdf of binomcdf. 3 Bereken de gevraagde kans met de GR. P(X minder dan 4) = P(X < 4) = P(X ≤ 3) P(X tussen 5 en 8) = P(X ≤ 7) – P(X ≤ 5) = P(X = 6) + P(X = 7) 11.5

  29. opgave 74 a Om in A uit te komen moet je 3 keer rechts. X = het aantal keer rechts. P(X = 3) = binompdf(9, ¼, 3) ≈ 0,234 b Om via C in B uit te komen moet je eerst 2 van de 4 keer naar rechts en dan nog eens 4 van de 6 keer naar rechts. X = het aantal keer rechts. P(X = 2) · P(X = 4) = binompdf(4, ¼, 2) · binompdf(6, ¼, 4) ≈ 0,007 6 2 4 2 3 2

  30. opgave 77 a X = het aantal personen uit de klasse ’65 plus’. P(X > 20) = 1 – P(X ≤ 20) = 1 – binomcdf(80, 0.13, 20) ≈ 0,001 b X = het aantal personen uit de klasse 20-39 jaar. P(X ≤ 15) = binomcdf(80, 0.31, 15) ≈ 0,010 c 0,20 · 80 = 16 0,40 · 80 = 32 X = aantal personen uit de klasse 40-64 jaar. P(X tussen 16 en 32) = P(X ≤ 31) – P(X ≤ 16) = binomcdf(80, 0.31, 31) – binomcdf(80, 0.31, 16) ≈ 0,926 p = 0,13 p = 0,31 p = 0,31

  31. De binomiale en de normale verdeling combineren opgave 88 a X = het aantal handelingen dat langer dan 3 minuten duurt. X is binomiaal verdeeld met n = 80 en p = normalcdf(180, 1099, 160, 15) ≈ 0,091 … P(X ≥ 10) = 1 – P(X ≤ 9) = 1 – binomcdf(80, 0.091 … , 9) ≈ 0,192 b 2 en een halve minuut is 150 seconden opp = normalcdf(-1099, 150, 160, 15) ≈ 0,2525 De kans dat een handeling korter duurt dan 2½ minuut is 0,2525. 180 · 0,2525 ≈ 45 handelingen minder dan 2½ minuut. c X = het aantal handelingen dat langer dan 2 min. en 45 sec. duurt. Voor welke n is P(X ≥ 5) > 0,99 met p = normalcdf(165, 1099, 160, 15) ≈ 0,369 … ? 150 Casio 1 – P(X ≤ 4) > 0,99 Voor welke n is P(X ≤ 4) < 0,01 Proberen geeft voor n = 27 is P(X ≤ 4) ≈ 0,011 voor n = 28 is P(X ≤ 4) ≈ 0,008. Dus minstens 28 remmen. TI 1 – binomcdf(n, 0.369 … , 4) > 0,99 Voer in y1 = 1 – binomcdf(x, 0.369 … , 4). Maak een tabel en lees af voor n = 27 is y1 ≈ 0,989 voor n = 28 is y1 ≈ 0,992. Dus minstens 28 remmen. 11.5

  32. Kansschaal 6.1

  33. opgave 3 a de som van de ogen 10 is 3 gunstige uitkomsten 36 mogelijke uitkomsten P(som is 10) = 3/36 ≈ 0,083 b som is minstens 8 15 gunstige uitkomsten P(som minst. 8) = 15/36 ≈ 0,417 c rood meer dan geel 15 gunstige uitkomsten P(rood meer dan geel) = 15/36 ≈ 0,417

  34. Samengestelde kansexperimenten het gooien met een dobbelsteen is een voorbeeld van een kansexperiment kenmerkend voor een kansexperiment is dat de uitkomst niet van te voren vastligt voorbeelden zijn: het gooien met een dobbelsteen en een geldstuk het gooien met 2 dobbelstenen het gooien met 3 geldstukken het kopen van 3 loten in een loterij het aantal gunstige uitkomsten bij een samengesteld kansexperiment met dobbelstenen of geldstukken krijg je bij: 2 kansexperimenten met een rooster 3 of meer experimenten met systematisch noteren en/of handig tellen 6.1

  35. Samengestelde kansexperimenten heb je met meer dan 2 experimenten te maken, dan bereken je kansen als volgt : bereken het aantal mogelijke uitkomsten tel het aantal gunstige uitkomsten door deze systematisch te noteren en/of handig te tellen deel het aantal gunstige door het aantal mogelijke uitkomsten zo krijg je bij een worp met 3 dobbelstenen en de gebeurtenis ‘som van de ogen is 15’ aantal mogelijke uitkomsten is 6 x 6 x 6 = 216 aantal gunstige uitkomsten is 10, namelijk 555 663 , 636 , 366 654 , 645 , 546 , 564 , 456 , 465 dus P(som is 15) = ≈ 0,046 1 + 3 + 6 10 = 216 216 6.1

  36. opgave 12 a de vliegreis wint P(vliegreis) = 1/36 = 0,028 b de troostprijs wint P(troostprijs) = 12/36 = 0,333 c prijswaarde minstens 550 euro P(minstens 550 euro) = 5/36 =0,139 d niets wint P(niets) = 13/36 = 0,361

  37. Empirische en theoretische kansen wet van de grote aantallen door een kansexperiment heel vaak uit te voeren, komt de relatieve frequentie van een gebeurtenis steeds dichter bij de kans op die gebeurtenis te liggen 1 empirische kansen v.b. : P(meisje bij geboorte) en P(punaise met punt omhoog) empirisch betekent ‘op ervaring gegrond’ empirische kansen krijg je door een groot aantal waarnemingen te gebruiken empirische kansen bereken je door relatieve frequenties te gebruiken 2 theoretische kansen bij veel kansexperimenten kun je van te voren zeggen wat de kans op een gebeurtenis is v.b. : P(6 ogen) bij een worp van een dobbelsteen is 1/6 je gebruikt de kansdefinitie van Laplace 3 subjectieve kans hoe groot is de kans dat voor 2010 je sneller loopt dan 9 seconden over de 100m.?  onmogelijk 6.2

  38. opgave 18 a de telling duurde 15 + 20 + 8 + 10 + 4 + 3 = 60 minuten b totaal = 5×15 + 6×20 + 7×8 + 8×10 + 9×4 + 10×3 = 397 fietsers c P(er passeren 5 per minuut)  empirische kans schatting = 15/60 = 0,25

  39. opgave 18 d kans e de som van alle kansen is 1 je hebt alle mogelijke uitkomsten 3/60 = 20/60 = 8/60 = 10/60 = 4/60 = 0,40 0,30 0,20 0,10 0 5 6 8 9 10 7 aantal fietsers per minuut

  40. opgave 19 b P(meer dan 3 minuten te laat) ≈ 0,2 + 0,2 = 0,4 c P(minstens 2 minuten, niet meer dan 4 minuten) ≈ 0,15 + 0,25 + 0,2 = 0,6 kans 0,40 a 0,30 0,25 0,20 0,20 0,20 0,15 0,15 3/20 = 0,15 2/20 = 0,15 0,10 0,05 1/20 = 0,05 0 0 1 3 4 5 2 aantal minuten te laat

  41. Simuleren door een kansexperiment voortdurend te herhalen kun je kansen schatten dat is echter een tijdrovend karwei b.v. : de kans dat bij een vliegtuig de automatische piloot uitvalt dit soort kansexperimenten gaat men simuleren (nabootsen) met de computer door vervolgens relatieve frequenties te berekenen, schat je kansen de grafische rekenmachine heeft opties om toevalsgetallen te genereren 6.2

  42. Simuleren met de GR 6.2

  43. opgave 26 Bij een spel kan Rob per keer € 2 winnen, € 1 winnen, quitte spelen, € 1 verliezen en € 2 verliezen elke mogelijkheid heeft dezelfde kans Rob begint met € 20 Schat m.b.v. een simulatie de kans dat Rob na 10 spelletjes minstens € 25 bezit selecteer de Random generator en kies bij instellingen van -2 tot 2 aantal getallen per experiment 10 vink gemiddelde aan voer het experiment een aantal keren uit en tel hoeveel keer het gemiddelde minstens gelijk is aan 0,5 de relatieve frequentie van deze gebeurtenis geeft een schatting van de gevraagde kans

  44. voorbeeld 1 kruistabel leeftijd a P(geen bijbaantje) = ≈ 0,402 b P(ouder dan 15) = ≈ 0,402 c P(krantwijk+16) = ≈ 0,037 d P(Een 16 jarige heeft krant) = ≈ 0,167 e P(Een supermarktwerker is 15) = ≈ 0,625 f P(jonger dan 17 en geen krantenw.) = ≈ 0,731 g P(Een 16 jarige met bijbaan, werkt in supermarkt) = ≈ 0,500 15 16 17 + 3 3 krantenwijk 15 3 1 19 10 16 supermarkt 10 4 2 16 3 82 overige 6 1 7 14 3 geen 18 10 5 33 33 18 82 18 82 82 49 18 15 15 82 18 10 16 10 + 4 + 6 + 1 + 18 + 10 49 + 18 4 3 + 4 + 1

  45. voorbeeld 2 kruistabel bloedgroep a 51 9 er geldt P(Rh + onder de voorwaarden A) = P(Rh+) dus x = x 170 = 200 60 60 · 170 = 51 200 9 b P(bloedgroep A en Rh-) = ≈ 0,045 c P(met Rh+ heeft A) = ≈ 0,3 200 51 170

  46. Kansbomen • bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken • je gaat als volgt te werk : • zet de uitkomsten bij de kansboom • bereken de kansen van de uitkomsten die je nodig hebt • vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst 6.3

  47. Draaiende schijven Bij het draaien van de schijven hoort de volgende kansboom 6.3

  48. Onafhankelijke kansexperimenten we gaan er bij het draaien van de schijven vanuit dat de kansexperimenten onafhankelijk zijn dat betekent dat ze elkaar niet beïnvloeden alleen dan mag je de kansen in de kansboom vermenigvuldigen als de kansen afhankelijk zijn (elkaar beïnvloeden) mag je de kansen in de kansboom niet vermenigvuldigen afhankelijke experimenten komen in dit boek niet voor 6.3

  49. opgave 39 a P(ba,ba,ba) = 2/4 × 1/3 × 1/4 = 2/24 ≈ 0,083 b P(ke,ke,ke) = 1/4 × 1/3 × 1/2 = 1/24 ≈ 0,042 c P(ci,ci,ba) = 1/4 × 1/3 × 1/2 = 1/24 ≈ 0,042 d P(ci,ci,ci) = 1/4 × 1/3 × 0 = 0

  50. opgave 40 a empirische kans b P(soep,vlees,ijs) = 0,6 × 0,5 × 0,8 = 0,24 c P(salade,vegetarisch,pudding) = 0,4 × 0,2 × 0,2 = 0,016 d P(soep,vis,ijs) = 0,6 × 0,3 × 0,8 = 0,144 dus naar verwachting 500 × 0,144 = 72

More Related