1 / 26

Algorithm Design and Analysis

L ECTURE 13 Dynamic Programming Fibonacci Weighted Interval Scheduling. Algorithm Design and Analysis. CSE 565. Adam Smith. Design Techniques So Far. Greedy . Build up a solution incrementally, myopically optimizing some local criterion.

apollo
Download Presentation

Algorithm Design and Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LECTURE 13 • Dynamic Programming • Fibonacci • Weighted Interval Scheduling Algorithm Design and Analysis CSE 565 Adam Smith A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  2. Design Techniques So Far • Greedy. Build up a solution incrementally, myopically optimizing some local criterion. • Recursion / divide &conquer. Break up a problem into subproblems, solve subproblems, and combine solutions. • Dynamic programming. Break problem into overlapping subproblems, and build up solutions to larger and larger sub-problems. A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  3. Dynamic Programming History • Bellman. [1950s] Pioneered the systematic study of dynamic programming. • Etymology. • Dynamic programming = planning over time. • Secretary of Defense was hostile to mathematical research. • Bellman sought an impressive name to avoid confrontation. "it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to" Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

  4. Dynamic Programming Applications • Areas. • Bioinformatics. • Control theory. • Information theory. • Operations research. • Computer science: theory, graphics, AI, compilers, systems, …. • Some famous dynamic programming algorithms. • Unix diff for comparing two files. • Viterbi for hidden Markov models / decoding convolutional codes • Smith-Waterman for genetic sequence alignment. • Bellman-Ford for shortest path routing in networks. • Cocke-Kasami-Younger for parsing context free grammars.

  5. Fibonacci Sequence • Sequence defined by • a1 = 1 • a2 = 1 • an = an-1 + an-2 • How should you compute the Fibonacci sequence? • Recursive algorithm: • Running Time? 1, 1, 3, 5, 8, 13, 21, 34, … Fib(n) If n =1 or n=2, then return 1 Else a = Fib(n-1) b = Fib(n-2) return a+b

  6. Computing Fibonacci Sequence Faster • Observation: Lots of redundancy! The recursive algorithm only solves n-1 different sub-problems • “Memoization”: Store the values returned by recursive calls in a sub-table • Resulting Algorithm: • Linear time, if integer operations take constant time Fib(n) If n =1 or n=2, then return 1 Else f[1]=1; f[2]=1 For i=3 to n f[i]  f[i-1]+f[i-2] return f[n]

  7. Computing Fibonacci Sequence Faster • Observation: Fibonacci recurrence is linear • Can compute An using only O(logn) matrix multiplications; each one takes O(1) integer multiplications and additions. • Total running time? O(logn) integer operations. Exponential improvement! • Exercise: how big an improvement if we count bit operations? Multiplying k-bit numbers takes O(k log k) time. • How many bits needed to write down an?

  8. Weighted Interval Scheduling • Weighted interval scheduling problem. • Job j starts at sj, finishes at fj, and has weight or value vj . • Two jobs compatible if they don't overlap. • Goal: find maximum weight subset of mutually compatible jobs. a b c d e f g h Time 0 1 2 3 4 5 6 7 8 9 10

  9. Unweighted Interval Scheduling Review • Recall. Greedy algorithm works if all weights are 1. • Consider jobs in ascending order of finish time. • Add job to subset if it is compatible with previously chosen jobs. • Observation. Greedy algorithm can fail spectacularly with weights weight = 999 b weight = 1 a Time 0 1 2 3 4 5 6 7 8 9 10 11

  10. Weighted Interval Scheduling Notation. Label jobs by finishing time: f1 f2  . . .  fn . Def. p(j) = largest index i < j such that job i is compatible with j. = largest i such that fisj Ex: p(8) = 5, p(7) = 3, p(2) = 0. 1 2 3 4 5 6 7 8 Time 0 1 2 3 4 5 6 7 8 9 10 11

  11. Dynamic Programming: Binary Choice • Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j. • Case 1: OPT selects job j. • collect profit vj • can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } • must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j) • Case 2: OPT does not select job j. • must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1 optimal substructure

  12. Weighted Interval Scheduling: Brute Force • Brute force algorithm. • Worst case: • T(n) = T(n-1) + T(n-2) + (…) Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) Compute-Opt(j) { if (j = 0) return 0 else return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) }

  13. Weighted Interval Scheduling: Memoization • Memoization. Store results of each sub-problem in a table;lookup as needed. Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) forj = 1 to n M[j] = empty M[0] = 0 M-Compute-Opt(j) { if (M[j] is empty) M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) returnM[j] } global array

  14. Weighted Interval Scheduling: Running Time • Claim. Memoized version of algorithm takes O(n log n) time. • Sort by finish time: O(n log n). • Computing p(): O(n log n) via repeated binary search. • M-Compute-Opt(j): each invocation takes O(1) time and either • (i) returns an existing value M[j] • (ii) fills in one new entry M[j] and makes two recursive calls • Case (ii) occurs at most n times at most 2n recursive calls overall • Overall running time of M-Compute-Opt(n) is O(n). ▪ • Remark. O(n) if jobs are pre-sorted by start and finish times.

  15. Equivalent algorithm: Bottom-Up • Bottom-up dynamic programming. Unwind recursion. Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) Iterative-Compute-Opt { M[0] = 0 forj = 1 to n M[j] = max(vj + M[p(j)], M[j-1]) } how fast? Total time = (sorting) + O(n) = O(nlog(n))

  16. Weighted Interval Scheduling: Finding a Solution • Q. Dynamic programming algorithms computes optimal value.What if we want the solution itself? • A. Do some post-processing. • # of recursive calls nO(n). Run M-Compute-Opt(n) Run Find-Solution(n) Find-Solution(j) { if (j = 0) output nothing else if (vj + M[p(j)] > M[j-1]) print j Find-Solution(p(j)) else Find-Solution(j-1) }

  17. Knapsack Problem • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. • Many “packing” problems fit this model • Assigning production jobs to factories • Deciding which jobs to do on a single processor with bounded time • Deciding which problems to do on an exam W = 11 # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  18. Knapsack Problem • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. W = 11 • Greedy: repeatedly add item with maximum ratio vi / wi • Example: { 5, 2, 1 } achieves only value = 35  greedy not optimal. # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  19. Knapsack Problem • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. W = 11 • Greedy algorithm? # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  20. Dynamic programming: attempt 1 • Definition: OPT(i) = maximum profit subset of items 1, …, i. • Case 1:OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } • Case 2:OPT selects item i. • without knowing what other items were selected before i,we don't even know if we have enough room for i • Conclusion. Need more sub-problems! A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  21. Adding a new variable • Definition: OPT(i, w) = max profit subset of items 1, …, i with weight limit w. • Case 1:OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } with weight limit w • Case 2:OPT selects item i. • new weight limit = w – wi • OPT selects best of { 1, 2, …, i–1 } with new weight limit A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  22. Bottom-up algorithm • Fill up an n-by-W array. Input: n, W, w1,…,wN, v1,…,vN for w = 0 to W M[0, w] = 0 for i = 1 to n for w = 1 to W if (wi > w) M[i, w] = M[i-1, w] else M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} return M[n, W] A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  23. 0 1 2 3 4 5 6 7 8 9 10 11  0 0 0 0 0 0 0 0 0 0 0 0 { 1 } 0 1 1 1 1 1 1 1 1 1 1 1 { 1, 2 } 0 1 6 7 7 7 7 7 7 7 7 7 { 1, 2, 3 } 0 1 6 7 7 18 19 24 25 25 25 25 { 1, 2, 3, 4 } 0 1 6 7 7 18 22 24 28 29 29 40 { 1, 2, 3, 4, 5 } 0 1 6 7 7 18 22 28 29 34 34 40 Item Value Weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 Knapsack table W n W = 11 OPT: { 4, 3 } value = 22 + 18 = 40 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  24. How do we make turn this into a proof of correctness? • Dynamic programming (and divide and conquer) lends itself directly to induction. • Base cases: OPT(i,0)=0, OPT(0,w)=0 (no items!). • Inductive step: explaining the correctness of recursive formula • If the following values are correctly computed: • OPT(0,w-1),OPT(1,w-1),…,OPT(n,w-1) • OPT(0,w),…,OPT(i-1,w) • Then the recursive formula computes OPT(i,w) correctly • Case 1: …, Case 2: … (from previous slide). A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  25. Time and Space Complexity • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. What is the input size? • In words? • In bits? W = 11 # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

  26. Time and space complexity • Time and space:(n W). • Not polynomial in input size! • Space can be made O(W) (exercise!) • "Pseudo-polynomial." • Decision version of Knapsack is NP-complete. [KT, chapter 8] • Knapsack approximation algorithm. There is a poly-time algorithm that produces a solution with value within 0.01% of optimum. [KT, section 11.8] A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne

More Related