290 likes | 529 Views
Cloud Computing Mapreduce (2). Keke Chen. Outline. Hadoop streaming example Hadoop java API Framework important APIs Mini-project. A nice book. Hadoop: The definitive Guide You can read it online from campus network - ohiolink ebook center safari online. Hadoop streaming.
E N D
Cloud ComputingMapreduce (2) Keke Chen
Outline • Hadoop streaming example • Hadoop java API • Framework • important APIs • Mini-project
A nice book • Hadoop: The definitive Guide • You can read it online from campus network - ohiolink ebook center safari online
Hadoop streaming • Simple and powerful interface for programming • Application developers do not need to learn hadoop java APIs • Good for simple, adhoc tasks
Note: • Map/Reduce uses the local linux file system for processing and hosting temporary data • HDFS is used to host application data HDFS Node Local file system
Hadoop streamining • http://hadoop.apache.org/common/docs/current/streaming.html • /usr/local/hadoop/bin/hadoop jar \ /usr/local/hadoop/hadoop-streaming-1.0.3.jar \ -input myInputDirs -output myOutputDir \ -mapper myMapper -reducer myReducer • Reducer can be empty: -reducer None • myMapper and myReducer can be any executable • Mapper/reducer will take stdin and output to stdout • Files in myInputDirs are fed into mapper as stdin • Mapper’s output will be the input of reducer
Packaging files with job submission • /usr/local/hadoop/bin/hadoop jar \/usr/local/hadoop/hadoop-streaming-1.0.3.jar \ -input “/user/hadoop/inputdata” \ -output “/user/hadoop/outputdata” \ -mapper “python myPythonScript.py myDictionary.txt” \ -reducer “/bin/wc” \ -file myPythonScript.py \ -file myDictionary.txt • -file is good for small files Input parameter for the script
Using hadoop library classes hadoop jar $HADOOP_HOME/hadoop-streaming.jar \ -D mapred.reduce.tasks=12 \ -input myInputDirs \ -output myOutputDir \ -mapper org.apache.hadoop.mapred.lib.IdentityMapper \ -reducer org.apache.hadoop.mapred.lib.IdentityReducer \ -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
Large files and archives • Upload large files to HDFS first • Use –files option in streaming, which will download files to local working directory • -files hdfs://host:fs_port/user/testfile.txt#testlink • -archives hdfs://host:fs_port/user/testfile.jar#testlink • Cache1.txt, cache2.txt are in testfile.jar • Then, locally testlink/cache1.txt, textlink/cache2.txt
Wordcount • Problem: counting frequencies of words for a large document collection. • Implement mapper and reducer respectively, using python • Some good python tutorials at http://wiki.python.org/
Mapper.py import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print ‘%s\t1’ % (word)
Reducer.py import sys word2count={} for line in sys.stdin: line = line.strip() word, count = line.split(‘\t’, 1) try: count = int(count) word2count[word] = word2count.get(word, 0)+ count except ValueError: pass for word in word2count: print ‘%s\t%s’% (word, word2count[word])
Running wordcount hadoop jar $HADOOP_HOME/hadoop-streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py" \ -input text -output output2 \ -file /localpath/mapper.py -file /localpath/reducer.py
Running wordcount hadoop jar $HADOOP_HOME/hadoop-streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py" \ -input text -output output2 \ -file mapper.py -file reducer.py \ -jobconf mapred.reduce.tasks=2 \ -jobconf mapred.map.tasks=4
If mapper/reducer takes files as parameters hadoop jar $HADOOP_HOME/hadoop-streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py myfile" \ -input text -output output2 \ -file /localpath/mapper.py -file /localpath/reducer.py -file /localpath/myfile
Hadoop Java APIs • hadoop.apache.org/common/docs/current/api/ • benefits • Jave code is more efficient than streaming • More parameters for control and tuning • Better for iterative MR programs
Important base classes • Mapper<keyIn, valueIn, keyOut, valueOut> • Function map(Object, Writable, Context) • Reducer<keyIn, valueIn, keyOut, valueOut> • Function reduce(WritableComparable, Iterator, Context) • Combiner • Partitioner
The framework public class Wordcount{ public static class MapClass extends Mapper<Object, Text, Text, LongWritable> { public void setup(Mapper.Context context){…} public void map(Object key, Text value, Context context) throws IOException {…} } public static class ReduceClass Reducer<Text, LongWritable, Text, LongWritable> { public void setup(Reducer.Context context){…} public void reduce(Text key, Iterator<LongWritable> values, Context context) throws IOException{…} } public static void main(String[] args) throws Exception{} }
The wordcount example in java • http://hadoop.apache.org/common/docs/current/mapred_tutorial.html#Example%3A+WordCount+v1.0 • Old/New framework • Old framework for version prior to 0.20
Mapper of wordcount public static class WCMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } }
WordCount Reducer public static class WCReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } }
Function parameters • Define map/reduce parameters according to your application • Have to use writable classes in org.apache.hadoop.io • E.g. Text, LongWritable, IntWritable etc. • Template parameters and the function parameters should be matched • Map’s output and reduce’s input parameters should be matched.
Configuring map/reduce • Passing global parameter settings to each map/reduce process • In main function, set parameters in a Configuration object Configuration conf = new Configuration(); Job job = new Job(conf, "cloudvista"); job.setJarByClass(Wordcount.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); job.setMapperClass(WCMapper.class); //job.setCombinerClass(WCReducer.class); job.setReducerClass(WCReducer.class); //job.setPartitionerClass(WCPartitioner.class); job.setNumReduceTasks(num_reduce); FileInputFormat.setInputPaths (job, input); FileOutputFormat.setOutputPath (job, new Path(output_path )); System.exit(job.waitForCompletion(true)?0:1);
How to run your app 1. Compile to jar file 2. Command line hadoop jar your_jar your_parameters • Normally you need to pass in • Number of reducers • Input files • Output directory • Any other application specific parameters
Access Files in HDFS? Example: In map function Public void setup(Mapper.Context context){ Configuration conf = context.getConfiguration(); string filename = conf.get(“yourfile"); Path p = new Path(filename); // Path is used for opening the file. FileSystem fs = FileSystem.get(conf);//determines local or HDFS FSInputStream file = fs.open(p); while (file.available() > 0){ … } file.close(); }
Combiner • Apply reduce function to the intermediate results locally after the map generates the result key1 combine Key1, value1 Key2, value2 … Keyn, valueN Map1 reduces Key n Map’s local
Partitioner • If map’s output will generate N keys (N>R, R:# of reduces) • By default, N keys are randomly distributed to R reduces • You can use partitioner to define how the keys are distributed to the reduces.
Mini project 1 • Learn to use HDFS • Read and run wordcount example http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html • Write a MR program for inverted-index /user/hadoop/prj1.txt • Implement two versions • Script/exe + streaming • Hadoop Java API • The file has “docID \t docContent” per line • Generating inverted index Word \t a list of “DocID:position”