1 / 31

O(He) Stars

O(He) Stars. Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics Kepler Center for Astro and Particle Physics Eberhard-Karls University Tübingen Germany. Overview. O(He) stars spectral analyses evolutionary scenario. O(He) Stars.

arella
Download Presentation

O(He) Stars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. O(He) Stars Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics Kepler Center for Astro and Particle Physics Eberhard-Karls University Tübingen Germany Hydrogen-Deficient Stars

  2. Overview • O(He) stars • spectral analyses • evolutionary scenario Hydrogen-Deficient Stars

  3. O(He) Stars • spectral sub-type O(He) by Méndez et al. (1986) • spectra dominated by He II absorption lines • CSPN K 1-27 • CSPN LoTr 4 • HS 1522+6615 • HS 2209+8229 • HS 0742+6520 preliminary analysis NLTE analysis by Rauch et al. 1998 Hydrogen-Deficient Stars

  4. O(He) Photospheric Parameters • Teff / kK log g H/He C/He N/He O/He • CSPN K 1-27 105 6.5 < 0.2 < 0.005 0.005 • CSPN LoTr 4 120 5.5 0.5 < 0.004 0.001 < 0.008 • HS 1522+6615 140 5.5 0.1 0.003 • HS 2209+8229 100 6.0 < 0.2 • Rauch et al. 1998, A&A 338, 651 • based on optical, UV (IUE), and • X-ray (ROSAT) spectra Hydrogen-Deficient Stars

  5. O(He) stars found amongst PG 1159 stars • two pairs of spectroscopic twins • HS 1522+6615 + LoTr 4 • HS 2209+8829 + K 1-27 no PN PN

  6. O(He) CSPN • construction of consistent models CS + PN • NLTE model-atmosphere fluxes used as ionizing spectra in photoionization models LoTr 4 K 1-27 H [O III] Hydrogen-Deficient Stars

  7. K 1-27 (PN G286.9-29.5) • Rauch, Köppen, Werner 1994, A&A 286, 543 • O(He) CSPN • Teff = 105 kK • log g = 6.5 (cgs) • H/He < 0.2 possibleborn again star! • M = 0.55 M • d = 1.3 kpc • PN • solar abundances • M = 0.018 Mpossibleborn again PN? • texp<<tevol • N54eV much too low Hydrogen-Deficient Stars

  8. LoTr 4 (PN G274.3+09.1) • Rauch, Köppen, Werner 1996, A&A 310, 613 • O(He) CSPN • Teff= 120 kK • log g = 5.5 (cgs) • H/He = 0.5 possibleborn again star! • M = 0.65 M • d = 6 kpc • PN • Solar abundances • M = 0.29 Mnormal PN • texp>>tevol Hydrogen-Deficient Stars

  9. Evolutionary Status of O(He) Stars • AGB • [WC] sdO(He) • PG 1159 O(He) • DA DO our picture 1998 ? ? ? ? ? Hydrogen-Deficient Stars

  10. Evolution of O(He) Stars • Evolutionary models (e.g. Herwig et al. 1999) • PG 1159 abundances (He:C:O=33:50:17 by mass) are result of late He-shell flash • O(He) cannot be explained Hydrogen-Deficient Stars

  11. O(He) vs. RCrB • Teff / kK log g H/He C/He N/He O/He • K 1-27 105 6.5 < 0.2 < 0.005 0.005 • LoTr 4 120 5.5 0.5 < 0.004 0.001 < 0.008 • HS 1522+6615 140 5.5 0.1 0.003 • HS 2209+8229 100 6.0 < 0.2 • RCrB < 0.0001 0.010 0.004 0.005 V 854 Cen 0.5 0.030 0.0003 0.003 Hydrogen-Deficient Stars

  12. Evolution of O(He) Stars • evolutionary models (e.g. Herwig et al. 1999) • PG 1159 abundances (He:C:O=33:50:17 by mass) are result of late He-shell flash • O(He) cannot be explained • third post-AGB evolutionary sequence? • hydrogen-rich • hydrogen-deficient ( [WC] – PG 1159 – DO ) • hydrogen-deficient ( RCrB – O(He) – DO ) ? Hydrogen-Deficient Stars

  13. Spectroscopy of O(He) Stars • high Teff  flux maximum in the EUV • precise NLTE spectral analysis needs • metal lines (of highly ionized species) • ionization equilibria  Teff • abundances • high S/N, high resolution UV spectra Hydrogen-Deficient Stars

  14. HST + FUSE Spectroscopy • photospheric spectra characterized by a few, broad and shallow, absorption lines from highly ionized species • e.g. He II, C IV, O VI, Si IV Hydrogen-Deficient Stars

  15. UV Observations • HST GHRS (Cy06) + STIS • Cy06: if C and N deficient  lines not visible • Cy07: optical analyses will answer questions • Cy08: line profiles mainly sensitive to velocity field • Cy09: data analysis not well described • Cy10: not as compelling as other proposals • Cy11: unclear how precise the abundances have to be (changed PI: Werner) • Cy12: these objects are only a small group in WDs – general interest not clear • Cy13: accepted (added “successors of RCrB stars?” to title) • first observations scheduled for Aug 9, 2004 • STIS failure Aug 3, 2004 Hydrogen-Deficient Stars

  16. Longmore 4 Hydrogen-Deficient Stars

  17. UV Observations • FUSE • Cy03: accepted ( 25 ksec) • Cy06: abundances of 4 stars will not fit a clear pattern (204 ksec) • Cy07: no good justification to repeat for higher S/N (204 ksec) • Cy08: accepted (only 3 stars, 204 ksec) • observations scheduled for summer 2007 • FUSE failure July 12, 2007 Hydrogen-Deficient Stars

  18. Thomas, heard about the new wheel failure of FUSE today? They have to terminate the mission. Rauch

  19. FUSE resolution reduced to 7Å Hydrogen-Deficient Stars

  20. Hydrogen-Deficient Stars

  21. Hydrogen-Deficient Stars

  22. static models Hydrogen-Deficient Stars

  23. “wind” models radiation-driven mass-loss rates (Pauldrach et al. 1988) -7.6 -7.7 -9.1 -9.5 Hydrogen-Deficient Stars

  24. mass-loss rates from Pauldrach X 30 Hydrogen-Deficient Stars

  25. Models with Fe group lines Hydrogen-Deficient Stars

  26. HS1522+6615

  27. Conclusions • mass-loss rates of O(He) stars are not higher than predicted by radiation-driven wind theory •  change of surface composition due to wind unlikely • FUSE spectra do not show isolated metal lines and thus, allow to give only upper limits for abundances • iron-group abundances are (probably) solar • UV spectroscopy will be performed with COS / STIS? • determination of C, N, O, and Si abundances to corroborate link to RCrBs Hydrogen-Deficient Stars

  28. Miller Bertolami & Althaus, 2006, A&A, 454, 845 M = 0.512Mʘ post early-AGB star “numerical experiment” increased mass-loss rates  hydrogen deficiency Hydrogen-Deficient Stars

  29. Conclusions II • low-mass O(He) stars • post early-AGB stars • first thermal pulse (TP) after departure from AGB • higher mass-loss rates  hydrogen deficiency • high-mass O(He) stars • “normal” born-again scenario • (V)LTP  hydrogen deficiency • alternative O(He) scenario • double-degenerate merger • similar H/He surface composition suggests that the O(He) stars are the progeny of RCrB stars • RCrB  O(He)  non-DA WD Hydrogen-Deficient Stars

  30. KPD 0005+5106 • is a successor of • high-mass O(He) stars? “Truth suffers from too many analysis.” Ancient Fremen Saying, Dune Messiah

More Related