210 likes | 533 Views
BallBot. Brian Kosoris Jeroen Waning Bahati Gitego Yuriy Psarev 10/11/2011. System Overview. Mechanical Structure Base Vertical structure Landing gear Electronics Sensors Actuators/Motors Control System State-space variable model MatLab / Simulink code. Mechanical Design (CAD).
E N D
BallBot Brian Kosoris Jeroen Waning BahatiGitego YuriyPsarev 10/11/2011
System Overview • Mechanical Structure • Base • Vertical structure • Landing gear • Electronics • Sensors • Actuators/Motors • Control System • State-space variable model • MatLab/Simulink code
Mechanical Design (CAD) • SolidWorks model
Mechanical Design (CAD) • SolidWorks model
Mechanical Design (CAD) • SolidWorks model
Electrical Components • New components • Micro ITX gigabyte board • High-level CPU to run MatLab • Processes integer data from IMU board • Runs control algorithm to digest sensor data • Provides output to motor controllers • 100% onboard control for self-sufficiency • A321 batteries x 30 for onboard power supply • Provides 12-16.5V (3-5A) to motors • Provides 5V for digital logic (IMU board and CPU)
Micro ITX onboard Computer • 1.6GHz CPU • 4GB DDR3 • Windows 7 • MatLab 2010
IMU Board • Arduino ATmega2560 • Microcontroller/microprocessor • ADXL345 Accelerometer • Three-axis acceleration measurement unit • IDG500 Gyroscope • Two-axis angular velocity measurement unit • Provides real-time feedback of inertial orientation in 3D space
Sensor Data Processing • IMU data will be relayed to onboard computer • MatLab will process complex state-space equations • Control system theory is used to model the system and provide feedback to motors
Controller Overview • State-space subsystem block diagram
Controller Simulation • Subsystem • Block-diagram representation of inside subsystem
Controller Simulation • State-space modeling • x’ = Ax + Bu; y = Cx + Du • MatLab A = 0 0 1.0000 0 0 0 0 1.0000 0 -198.9738 -0.0567 0.0567 0 42.8060 0.0092 -0.0092 B = 0 0 0 1 C = 1 0 0 0 D = 0
State-space model (cont.) controllability_matrix = 0 0.61661 -0.040635 19.844 0 -0.099717 0.0065714 -4.2689 0.61661 -0.040635 19.844 -2.6754 -0.099717 0.0065714 -4.2689 0.5025 Controllable_Rank_is = 4 observability_matrix = 1 0 0 0 0 0 1 0 0 -198.97 -0.056727 0.056727 0 13.715 0.0037383 -198.98
State-space model (cont.) Obsevabile_Rank_is= 4 Poles = 0 -6.5686 6.5168 -0.014085 Kd = -36.621 -1698.7 -40.986 -423.26 pole_placement= -14 -5 -240 -180 L = 438.93 -4372.5 51264 -26241 K_f = -0.14086 -886.74 -1.4844 -141.81 K_i = -0.0071253
State-space model (cont.) K_LQR = -0.14086 -886.74 -1.4844 -141.81 -0.0071253 new_A_by_K_gain = 0 0 1 0 0 0 0 0 1 0 0.086857 347.8 0.85855 87.502 0.0043935 -0.014046 -45.618 -0.13884 -14.151 -0.00071051 1 0 0 0 0
Title • Contents
Title • Contents