1 / 28

CS 140 Lecture 9 Sequential Networks

CS 140 Lecture 9 Sequential Networks. Professor CK Cheng CSE Dept. UC San Diego. Sequential Networks. Combinational. D. B. C. A. CLK. CLK. Components F-Fs Specification Implementation: Excitation Table. Specification. Finite State Machine: Input Output Relation State Diagram

Download Presentation

CS 140 Lecture 9 Sequential Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 140 Lecture 9Sequential Networks Professor CK Cheng CSE Dept. UC San Diego

  2. Sequential Networks Combinational D B C A CLK CLK • Components F-Fs • Specification • Implementation: Excitation Table

  3. Specification • Finite State Machine: • Input Output Relation • State Diagram • State Table • Circuit: • Logic Diagram • Netlist • Boolean Expression

  4. x D1 Q1 Q0 Q D Q’ Q0 y Q D Q1 Q’ D0 Clk Netlist  State Table  State Diagram Input Output Relation y(t) = Q1(t)Q0(t) Q0(t+1) = D0(t) = x(t)Q1(t) Q1(t+1) = D1(t) = x(t) + Q0(t)

  5. Netlist  State Table  State Diagram Input Output Relation x D1 Q1 Q0 Q D Q’ y Q D Q0 Q1 Q’ D0 Clk y(t) = Q1(t)Q0(t) Q0(t+1) = D0(t) = x(t)Q1(t) Q1(t+1) = D1(t) = x(t) + Q0(t)

  6. input x=0 x=1 PS S0 S1 S2 S3 S0, 0 S2, 0 S2, 0 S2, 0 S0, 0 S3, 0 S2, 1 S3, 1 Logic Diagram => State Table y(t) = Q1(t)Q0(t) Q0(t+1) = D0(t) = x(t) Q1(t) Q1(t+1) = D1(t) = x(t) + Q0(t) State table input Let: S0 = 00 S1 = 01 S2 = 10 S3 = 11 x=0 x=1 PS 00 01 10 11 00, 0 10, 0 10, 0 10, 0 00, 0 11, 0 10, 1 11, 1 Q1(t)Q0(t)Q1(t+1)Q0(t+1), y(t) Remake the state table using symbols instead of binary code , e.g. ’00’

  7. x/y 1/1 0/0 0/0 1/0 0,1/0 S2 S3 S1 S0 0/1 1/0 input x=0 x=1 PS S0 S1 S2 S3 S0, 0 S2, 0 S2, 0 S2, 0 S0, 0 S3, 0 S2, 1 S3, 1 State Table => State Diagram Example: Output sequence

  8. X T0 Q0 Q T Q’ y Q Q1 T Q’ T1 Example with T Flip-Flops y(t) = Q1(t)Q0(t) Q0(t+1) = T0(t) = x(t) Q1(t) Q1(t+1) = T1(t) = x(t) + Q0(t)

  9. Logic Diagram => Excitation Table => State Table y(t) = Q1(t)Q0(t) T0(t) = x(t) Q1(t) T1(t) = x(t) + Q0(t) Q0(t+1) = T0(t) Q’0(t)+T’0(t)Q0(t) Q1(t+1) = T1(t) Q’1(t)+T’1(t)Q1(t) Excitation Table

  10. Excitation Table =>State Table => State Diagram State Assignment S0 00 S1 01 S2 10 S3 11 1/1 0/0 0/1 S0 S1 S3 1/0 0, 1/0 1/0 S2 0/0

  11. 1/1 0/0 0/1 S0 S1 S3 1/0 0, 1/0 1/0 S2 0/0 Excitation Table =>State Table => State Diagram Example: Output sequence

  12. Implementation: State Diagram => State Table => Netlist Pattern Recognizer: A sequential machine has a binary input x in {a,b}. For x(t-2, t) = aab, the output y(t) = 1, otherwise y(t) = 0. b/1 b/0 S1 S0 a/0 a/0 S2 a/0 b/0

  13. State Diagram => State Table with State Assignment State Assignment S0: 00 S1: 01 S2: 10 Q1(t+1)Q0(t+1), y a 0 b 1

  14. State Table => Excitation Table

  15. Q0 D1(t): 0 2 6 4 0 1 - 1 1 3 7 5 0 0 - 0 x(t) Q1 Excitation Table => Boolean Expression D1(t) = x’Q0 + x’Q1 D0 (t)= Q’1Q’0 x’ y= Q1x

  16. Q’1 Q0 D0 Q Q’0 D x’ Q’ Q1 y x’ D1 Q D Q0 Q’ Q1 x D1(t) = x’Q0 + x’Q1 D0 (t)= Q’1Q’0 x’ y= Q1x

  17. Canonical Form: Mealy and Moore Machines x(t) y(t) Combinational Logic CLK x(t) C2 y(t) x(t) C1 C2 y(t) C1 CLK CLK

  18. Canonical Form: Mealy and Moore Machines Moore Machine: yi(t) = fi(X(t), S(t)) Mealy Machine: yi(t) = fi(S(t)) si(t+1) = gi(X(t), S(t)) x(t) x(t) C1 C2 y(t) C1 C2 y(t) CLK CLK s(t) s(t) Moore Machine Mealy Machine

  19. Finite State Machine Example • Traffic light controller • Traffic sensors: TA, TB (TRUE when there’s traffic) • Lights: LA, LB

  20. FSM Black Box • Inputs: CLK, Reset, TA, TB • Outputs: LA, LB

  21. FSM State Transition Diagram • Moore FSM: outputs labeled in each state • States: Circles • Transitions: Arcs

  22. FSM State Transition Diagram • Moore FSM: outputs labeled in each state • States: Circles • Transitions: Arcs

  23. FSM State Transition Table

  24. State Transition Table Q1(t+1)= Q1(t)Å Q0(t) Q0(t+1)= Q’1(t)Q’0(t)T’A + Q1(t)Q’0(t)T’B

  25. FSM Output Table LA1 = Q1 LA0 = Q’1Q0 LB1 = Q’1 LB0 = Q1Q0

  26. FSM Schematic: State Register

  27. Logic Diagram

  28. FSM Schematic: Output Logic

More Related