1 / 19

Masonry construction - Exercise

Masonry construction - Exercise. cross section. ground plan upper floor. ground plan Ground floor. ground plan Basement. ground plan Basement. basement- high precision bricks 6/lm d = 300 mm f k = 2,2 N/mm 2 h e =2,41 m h s = 2,5 m  e = 19 kN/m 3 q k = 5 kN/m 2. N. N. M.

Download Presentation

Masonry construction - Exercise

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Masonry construction - Exercise cross section Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  2. ground plan upper floor Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  3. ground plan Ground floor Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  4. ground plan Basement Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  5. ground plan Basement basement- high precision bricks 6/lm d = 300 mm fk = 2,2 N/mm2 he=2,41 m hs = 2,5 m e = 19 kN/m3 qk = 5 kN/m2 Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  6. N N M d Design load eccentricity: e = M/N e c sexist e  d/3 1. 2. σexist σpermissable Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  7. Design method Boundary conditions forsimplifiedmethod ot a basement wall d ≥ 240 mm hs ≤ 2,6m qk ≤ 5,0 kN/m2 he ≤ hs Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  8. Verification of conditions • Wall thickness d = 300 > 240 mm • Max. floor height hs = 2,5 < 2,6 m • Max live load qk = 5 ≤ 5 kN/m2 • he = 2,41 ≤ hk = 2,50 m  Use of the simplified method Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  9. Proof at half height of the fill mit N1,Rd,d = upper limit of the wall normal force N1,lim,d = lower limit of the wall normal force N1,Ed= Design value of the wall normal force from the load case Nmax and Nmin d = Wall thickness fd = Design value of the masonry compressive strength e = Weights of the fill Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  10. Verification on the top of the wall N0,lim,d = lower limit of the wall normal force (s. table) N1,Ed= Design value of the wall normal force from the load case Nmax and Nmin Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  11. load collection dead weight Gk Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  12. live load Qk Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  13. Action • for cases with only one live load Qk,1 • for cases with more than one live load Qk,i Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  14. partial safety factors of actions Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  15. for unusual effects special rules Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  16. Minimum normal force at the top of the wall (only dead load without increasing by PSF) Minimum normal force in half storey height Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  17. Maximum normal force at the top of the wall Maximum normal force in half storey height Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  18. lower limits N1,lim,d for basement walls upper limit due to load bearing capacity Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

  19. Verification E1,lim,d = 45,98 kN/m < R1,Rd,min = 50,94 kN/m d·fd/3 = 124,67 kN/m > R0,Rd,max = 85,58 kN/m OK! Prof. Dr.-Ing. Wolfram Jäger - LS Tragwerksplanung - Fakultät Architektur

More Related