1 / 26

Heavy Flavor and Deconfinement

Heavy Flavor and Deconfinement. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Sapore Gravis Workshop Nantes (France), 02.-05.06.13. 1.) Introduction: A “Calibrated” QCD Force. V [½ GeV]. [Kaczmarek

aviv
Download Presentation

Heavy Flavor and Deconfinement

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy Flavor and Deconfinement Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Sapore Gravis Workshop Nantes (France), 02.-05.06.13

  2. 1.) Introduction: A “Calibrated” QCD Force V [½GeV] [Kaczmarek et al ‘03] r [½ fm] • Vacuum charm-/bottomonium spectroscopy well described • Confinement?! Operational criterion: linear part of potential • most sensitive to J/y + ’ (EBCoul(J/y) ~ 0.05 GeVvs. 0.6 GeVexp.) • nonperturbative treatment • potential approach in medium?

  3. Outline 1.) Introduction 2.) Heavy Quark/onium in QGP 3.) Quarkonium Transport 4.) Comparison to RHIC + LHC Data 5.) Conclusions

  4. 2.) Thermodynamic T-Matrix in QGP • Lippmann-Schwinger equation In-Medium Q-QT-Matrix: - • potential Va strictly real • imaginary parts: unitarization (cuts in in-med. QQ propagatorGQQ) • simultaneous treatment of: • - bound + scattering states • - quarkonia (QQ) + heavy-quark diffusion (Qq,g) -

  5. 2.2 Brueckner Theory of Heavy Quarks in QGP InputProcessOutputTest quark-no. susceptibility Q → Q 0-modes lattice data spectral fcts./ eucl. correlat. - 2-body potential QQ T-matrix - QQ evolution (rate equation) Qq T-matrix Quark selfenergy exp. data Q spectra + v2 (Langevin)

  6. 2.3 Free vs. Internal Energy in Lattice QCD F1(r,T) = U1(r,T) – T S1(r,T) Free Energy Internal Energy [Kaczmarek +Zantow ’05] - - • strong QQ potential,U = ‹Hint› • large mQ*~ mQ+ U1(∞,T)/2 • weak QQ potential • small mQ*~mQ+ F1(∞,T)/2 • F, U, Sthermodynamic quantities • Entropy: many-body effects

  7. D - D J/y - c c J/y 3.) Quarkonium Transport in Heavy-Ion Collisions [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] • Inelastic Reactions: • detailed balance: → - ← J/y + g c + c + X • Rate • Equation: • Thermal Input: Transport coefficients • - chemical relaxation rate Gy • - equililbrium limit Nyeq(eyB, mc* ,tceq) • Phenomenological Input: • - J/y,cc,y’+c,b initial distributions [pp, pA] • - space-time medium evolution [AA: hydro,...] Observables

  8. 3.1Thermal Charmonium Properties (a) EquilibriumYnumber: - • gc from fixed cc number: • interplay of mc* and • constrain spectral shape by • lattice-QCD correlators eyB mc* (b) Inelastic YWidth q q • controlled by as(parameter) Gy

  9. 3.2 Effect of Partial c-Quark Thermalization on J/y • Relaxation time ansatz: Nyeq (t) ~ Nytherm(t) · [1-exp(-t/tceq)] Microscopic Calculation Impact on Regeneration [Zhao ‘11] [Song,Han, Ko ‘12] • significant sensitivity of regeneration on charm-quark diffusion

  10. 3.2.2 D-Meson Thermalization at LHC A • to be determined…

  11. 4.1 Inclusive J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10] • as~0.3, charm relax. tceq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix • different composition in two scenarios

  12. 4.1.2 J/y pT Spectra + Elliptic Flow at RHIC (U potential) • shallow minimum at low pT • high pT: • formation time, b feeddown, Cronin • small v2limits regeneration, • but does not exclude it

  13. 4.2.1 J/y at LHC: Centrality Dependence Mid-Rapidity Forward Rapidity • regeneration becomes dominant • uncertainties: sccbar, shadowing, … • transport approaches consistent [Zhao+RR ‘11]

  14. 4.2.2 J/y at LHC: pT-Spectra + v2 • low pT maximum confirms • expected regeneration level • b-feeddown prevalent at high pT • significant increase at mid-y [He et al ’12]

  15. 4.3 (1S) and (2S) at LHC Weak Binding Strong Binding (1S) → (2S) → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times • clear preference for strong binding (U potential) • similar results by [Strickland ‘12]

  16. 5.) Conclusions • Quarkonium discoveries at LHC: • - increase of J/yRAAover RHIC/SPS • - low-pT enhancement • - sizable v2 • - strong suppression of ’ (eB’~ eBJ/y) • Predicted signatures of QGP transport + hadronization • - controlled by quantitative description of RHIC+SPS data, lattice QCD • Implications • - Ti SPS(~240) < Tdiss(J/y,’) < TiRHIC (~350) < TiLHC(~550) ≤ Tdiss() • - confining force screened at RHIC+LHC • - marked recombination of diffusing charm quarks at LHC • Uncertainties • - input HF cross sections, HF thermalization • - initial-state effects (final-state in dAu, pPb?!)

  17. q q 2.) Thermodynamic T-Matrix for Quarkonia in QGP • Lippmann-Schwinger equation In-Medium Q-QT-Matrix: - • potential Va strictly real • imaginary parts: unitarization (cuts in in-med. QQ propagatorGQQ) - • gluo-dissosciation (coupled channel) • [Bhanot+Peskin ‘85] • Landau damping (HQ selfenergy)

  18. 3.3.3 J/y at LHC III: High-pt – ATLAS+CMS [Zhao+RR ‘11] • underestimate for peripheral • (spherical fireball reduces surface effects …)

  19. 3.3.4 Time Evolution of J/y at LHC Strong Binding (U) Weak Binding (F) • finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11]

  20. 3.4  at RHIC and LHC Weak Binding Strong Binding RHIC → LHC → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times

  21. 3.2 Charmonia in QGP: T-Matrix Approach • U-potential, • selfconsist. c-quark width • Spectral Functions • - J/y melting at ~1.5Tc • - cc melting at ~Tc • - Gc ~ 100MeV • Correlator Ratios • - rough agreement with • lQCD within uncertainties [Aarts et al ‘07] [Mocsy+ Petreczky ’05+’08, Wong ’06, Cabrera+RR ’06, Beraudo et al ’06, Satz et al ’08, Lee et al ’09, Riek+RR ’10, …]

  22. 3.2.2 T-matrix Approach with F-Potential • selfcons. c-quark width • Spectral Functions • - J/y melting at ~1.1Tc • - cc melting at ≤ Tc • - Gc ~ 50MeV • Correlator Ratios • - slightly worse agreement • with lQCD [Aarts et al ‘07] [Riek+RR ’10]

  23. 3.3 Charm-Quark Susceptibility in QGP → 2 → G→ 0 m « T [Riek+RR ‘10] • sensitive to in-medium charm-quark mass • finite-width effects can compensate in-medium mass increase

  24. 4.2.5.2 Thermalization Rate from T-Matrix gc [1/fm] • thermalization 4 (2) times faster using U (F) as potential than pert. QCD • momentum dependence essential (nonpert. effect ≠ K-factor!) [Riek+RR ‘10]

  25. _ 3.1.3 Momentum Dependence of Inelastic Width • dashed lines: gluo-dissociation • solid lines: quasifree dissociation • similar to full NLO calculation [Park et al ‘07] [Zhao+RR ‘07]

  26. 4.3 J/y at Forward Rapidity at RHIC [Zhao+ RR ‘10]

More Related