140 likes | 269 Views
Twist 4 Matrix elements. Su Houng Lee 1. S. Choi et al, PLB 312 (1993) 351 2. Su Houng Lee, PRD 49 (1994) 2242. Some basics on matrix elements and moments. DIS. e (E’,k’). e (E,k). X. P. Polarization Tensors. Where w =2pq/q 2. OPE. P. P. Diagrammatic rep of Structure function.
E N D
Twist 4 Matrix elements Su Houng Lee 1. S. Choi et al, PLB 312 (1993) 351 2. Su Houng Lee, PRD 49 (1994) 2242
Some basics on matrix elements and moments • DIS e (E’,k’) e (E,k) X P • Polarization Tensors Where w =2pq/q2
OPE P P • Diagrammatic rep of Structure function X P P • Diagrammatic rep of OPE P P
Twist-2 Operators P P • Twist-4 Operators P P P P
Twist-4 Operators • OPE • Operators • mass Operators
Parameterizing F2 (t=4) • For Cp: BCDMSdata and SLAC data +Virchauz,Milsztajin, PLB274 (92) 221 • We fit to • For Cp-Cn: NMC (combining NMC,SLAC, BCDMSdata) • We fit to
Parameterizing FL (t=4) • Parameterization using transverse basis (Ellis, Furmanski, Petronzio 82) P P • SLAC data analyzed by Sanchex Guillen etal. (91)
Constraints for matrix elements from experiments Note that the matrix elements A’s for the proton and neutron data are independent. data MIT Bag
MIT Bag model calculations (Jaffe-Soldate 81) • Definitions • Calculations • operators • Normalizations by Jaffe (75)
Calculations- cont • calculations involve spin and spatial parts
MIT Bag model vs experimental constraint • F2: Q2=5 GeV2 as = 0.5 • FL: Q2=5 GeV2 as = 0.5
A Parameterization based on flavor structure • Flavor structure • 7 Unknowns: F2,FL, proton, neutron target 4 constraints
Summary - i • Twist-4 matrix elements are interesting itself because, • a) First experimental measurements of multiparticle correlation inside proton • b) Need much more correlation than • such as c) Non-trivial test of low energy models of QCD d) QCD sum rules for hadrons in nuclear matter
Summary - ii 2. To answer the questions, need experimental update on