1 / 30

Nanoantennas for ultrabright single photon sources

R. Filter, K. Słowik , J. Straubel , F. Lederer , and C. Rockstuhl Institute of Condensed Matter Theory and Solid State Optics Abbe Center of Photonics Friedrich-Schiller- Universität Jena, Germany robert.filter@uni-jena.de. Nanoantennas for ultrabright single photon sources.

bernie
Download Presentation

Nanoantennas for ultrabright single photon sources

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. R. Filter, K. Słowik, J. Straubel, F. Lederer, and C. Rockstuhl Institute of Condensed Matter Theory and Solid State Optics Abbe Center of Photonics Friedrich-Schiller-Universität Jena, Germany robert.filter@uni-jena.de Nanoantennasforultrabrightsinglephotonsources

  2. Feynman’s Dream • „There‘s Plenty of Room at the Bottom“ • Feynman, Caltech 1959 • goal: arrange atoms on the nanoscale • new opportunities for design • laws of quantum mechanics Conclusion: Nanoantennas – a dream becoming reality

  3. Outline • Nonclassical light basics • Nanoantennasforultrabrightsinglephotonsources

  4. Nonclassical Light • light propertiesthatcannotbeexplainedusingclassicaltheories squeezed light singlephotons entanglement Han et al, Appl. Phys. Lett. 92(2008) Ates et al., Phys. Rev. Lett.103 (2009) Oka, Appl. Phys. Lett. 103 (2013) • nonlin. vs. loss time scales • couplingto non-bosonicsystems • enhancedemission • via interactionofquantumsystems

  5. Nanostructures: Single Photon Sources enhancedsingle-photon em. quantumpropertiessurvive Akimov et al., Nature 450(2007) • Goal: Ultra-brightintegrated • single-photon sources • quantumcomputation • quantumCryptography • single-photon interactions • … Claudon et al., Nat. Phot. 4 (2010)

  6. Single-Photon Source Characterization – g²(τ) Usualquantification: second-order correlationfunction Why? Comparepossibleclassicalandquantumvalues. Classically: Order not impartant: at :

  7. Quantum g²(τ) Cannotignoreorderofoperators! assumption: singlemodefield (otherwisesummation)

  8. Quantum g²(τ) - examples Thermal Radiation: (Boltzmann) Boitier et al., Nat. Comm. 2 (2011) Coherent Radiation: (Poisson) Öttl et al., Phys. Rev. Lett95(2005) interpretation: thephotonsarrive in bunches

  9. Quantum g²(τ) - examples n-photon source: all light is in then‘th (Fock) state: n = 1: g²(0) = 0! noclassicalanalogon – antibunching Kimble et al., Phys. Rev. Lett. 39 (1977)

  10. Why Nanoantennas for Single-Photon Sources? Far field ↔ Near field (passive): enhanced interaction NonlinearProcesses (aktive) H. Yagi & S. Uda, 1926 Utikal et al., Phys. Rev. Lett. 106 (2011) Bharadwaj et al, Adv. Opt. Phot. 1 (2009)

  11. Esteban et al., Phys. Rev. Lett. 104 (2010) sub GHz Busson et al., Nat. Comm. 4 (2012) Michler et al., Science 290 (2000) mainaspects: Emission Rate & Nonclassicality

  12. nonclassical light properties: nanoantennaquantizationinevitable

  13. Nanoantenna& Quantum System Interaction • Semiclassical Description • back-action of quantum system negligible Filter et al., Opt. Expr. 21 (2013) & Phys. Rev. B 86 (2012) • Cavity QED description • back-action of quantum system taken into account • nonclassical field dynamics Słowik, Filter et al., Phys. Rev. B 88 (2013) • Time Dependent Density Functional Theory treatment • exhaustive and demanding • internal properties of nanoantenna, “exact” near-field Zuolagaet al., Nano Lett. 9 (2009)

  14. NanoantennacQED • cQED working horse: atom in a cavity • Parameters: • loss rate Γ • couplingconstant ϰ • cavityandatomfrequenciesωc & ωat • Nanoantennas can be treated similar • Loss rate Γ= Γrad+ Γdiss • couplingconstant ϰ • nanoantenna modeandatomfrequenciesωna & ωat • assumption: bosonicexcitation, i.e. harm. oscillator

  15. CavityQuantization also forNanoantennas? • cQEDapproachappealingvsinvolvedGreen‘sfunctionquantization • open cavity: losses! • Mode usagejustified? Yes, quasinormal modes • Basics: Ching et al., Rev. Mod. Phys. 70 (1998), plasmonicscalculations: de Lasson et al., JOSA B 30(2013) • quantization not trivial • approximate determination: • eigenmodefrequencyωn via scatteringanalysis • normalize scattered near fields to energy ħωn En(r) & Bn(r) • calculatelossratesvia Poynting‘stheorem e.g. dipoleinteraction: Słowik, Filter et al., Phys. Rev. B 88 (2013)

  16. Single-Photon Sources– Real Quantum Approach Isitpossibletobuild a miniaturizedultra-brightsinglephotonsourcewithnicenonclassicalproperties? Answer so far: ofcourse, just a matter of high Purcell factor! But: Things arenot that easy… Need fullyquantumapproach! Quantum dotcoupledtonanoantenna in cQEDformalism, Jaynes-Cummings Heisenberg picturewithincoherent pump of QD andlossofnanoantenna: Filter et al., Opt. Lett. 39 (2014)

  17. Quantum Single Photon Source – Emission rate coldreservoirsolution: withnanoantennaefficiency Purcell factorconnection: • Twolimitingcasesof R vs. : • weak pump: • strong pump: But usuallyfaraway from strong pump! Emission Rate: Purcell & pumping rate Filter et al., Opt. Lett. 39 (2014)

  18. Nanoantenna Design • two-ellipsoid nanoantennas, varyingconformalratios a/d • parameterdetermination • trade-off: efficiency vs. couplingstrength Filter et al., Opt. Lett. 39 (2014)

  19. Quantum Calculations • densitymatrixformulation • includelosses All quantum observables canbecalculated! Filter et al., Opt. Lett. 39 (2014)

  20. Emission Rate Theory Check vs. fullyquantumcomputation Filter et al., Opt. Lett. 39 (2014)

  21. Check fornonclassicality – quantumsimulations trade-off: Purcell factorvs. g²(0) Filter et al., Opt. Lett. 39 (2014)

  22. Conclusion • Plasmonics: • Electricalengineering – nanoantenna design • Nanofabrication – physical, chemical • Nanophotonics – theoreticaldescription • Quantum optics • nanoantennacQED: • parametersfromclassicalsimulations • truequantumphenomena

  23. Appendix

  24. CavityQuantization in a Nutshell I Single-mode cavity, Volume Hamilton functionfromenergydensityandwith Hamilton eqs:

  25. CavityQuantization in a Nutshell II Canonicalcommutationrelation → annihilation & creationoperators → Hamilton & interactions : fullyquantumfields:

  26. Squeezed Light - Heisenberg Heisenberg: withstd.deviation example: Possibility: improveonestandarddeviationatcostoftheother - ex.: definedstatewithrespecttoposition, but high uncertainty in momentum Squeezedstates: amplitude vs. phasedeviation trade-off

  27. Squeezed Light - Operators Quadrature Operators: Connection toamplitudeandphase: Squeezed State:

  28. Squeezed State Generation - Theory Squeeze Operator: Squeezedvacuumstate Variancesofquadratureoperators, squeezingstrength ~ r: i.e. amplitudesqueezingfor

  29. Squeezed State Generation - Physics • Two different nonlineareffectsareusedtogeneratesqueezedstates: • degenerateparametric down conversion • degeneratefour-wavemixing • Connection tosqueezedstates: • assumecoherent (classical) state in pump b, withamplitudeβ • defineand • interactioncanbewrittenas • Unitary time evolution:squeezedstates

  30. Squeezedstates – Opportunities?! cavitypolaritons – strong nonlinearity Nanoantennas? Nonlinearities vs. lossesverysmall negligiblesqueezing Karr et al, Phys. Rev. A 69 (2004)

More Related