1 / 14

Understanding Electric Current: Concepts and Applications

Learn about current flow, current density, microscopic descriptions, and conductivity. Test your knowledge with quizzes on current direction, field, and more. Improve your understanding of electric current fundamental concepts.

brooks
Download Presentation

Understanding Electric Current: Concepts and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Announcements

  2. I + + + - - - Current • Current, I, is the rate of flow of electric charge, dQ/dt is the instantaneous current • It is measured in Coulombs/Second • Unit is Ampere (amp, or A) • The direction of current is the direction that positive charges would flow • Or the opposite of the direction that negative charges flow • There must be a net transport of charge to have a current.

  3. - - - Quiz • Suppose we have a current from a flow of electrons to the right. • In what direction is the current? • In what direction is the electric field? • To the right • To the left • Up • Down • None of the above

  4. Quiz • Suppose we have a current from a flow of Calcium (+2) ions • In what direction is the current? • In what direction is the electric field? • To the right • To the left • Up • Down • None of the above +2 +2 +2

  5. Current Density • Current Density, J, is the amount of current flow through a unit area • Assuming uniform current parallel to dA • Note: For a fixed area, the current density is independent of shape • Remember: Current has a direction! Area A Current I

  6. Current: Details • When thinking about current flow, think about fluid flow. • Remember that a conductor at equilibrium has no field inside • For there to be a current one cannot be at equilibrium • There has to be a potential difference, otherwise for every carrier moving in one direction another one is moving in the opposite • Think about fluid flow: there has to be a potential difference for fluid to flow otherwise water is stagnate. Area A Current I

  7. Current I Current: Flow • When thinking about current flow, think about fluid flow. • The flow in equals the flow out • So the current in equals the current out I3 I2 I1 Area A I1= I2+ I3

  8. Quiz • In which of the following situations is the magnitude of the current the largest 3C/s 2C/s 6C/s 7C/s + + + + 5C/s 1C/s 5C/s - - - A C D B Area A Current I

  9. Microscopic Description of Current: Qualitative • Microscopically current is due to the movement of charge carriers • In the Drude model, the electrons diffuse in the absence of • an applied field • Electron Gas When a field is applied, the symmetry of the “motion” of the electrons is broken and there is a net drift.

  10. Microscopic Description of Current: Math • Assume uniform motion and density of charge carriers • The charge in a wire of length L can be calculated q=(nAL)e, for electrons • The total charge moves through a cross-section in: t=L/v ; v is the drift velocity A L

  11. Microscopic Description of Current: Math • Assume uniform motion and density of charge carriers • I=q/t=nALev/L =nAev • This implies (J=I/A) that J=(ne)v ne is the charge carrier density A L

  12. Quiz • Suppose I have an ion channel through which sodium (+1) ions flow • Suppose I have another ion channel through which calcium (+2) ions flow. If the concentration of the ions are the same, and drift velocities are the same, then how are the current densities in thetwo channels related? • The current densities are identical • The current density in the sodium channel is twice the current • density in the calcium channel. • C) The current density in the calcium channel is twice the current • density in the sodium channel. • D) The current density in the calcium channel is four time the current density in the sodium channel.

  13. Conductivity • In an ideal material (superconductor) no force is needed to keep the charge moving • In most materials, electric field is required to make the current move • the current is proportional to the electric field, and the conductivity • The conductivity is a property of the material Electric Field E Current I

  14. Conductivity • In most materials, electric field is required to make the current move • the current is proportional to the electric field, and the conductivity Empirically, • The conductivity is a property of the material • the resistivity is the reciprocal of the conductivity, nothing more!

More Related