1 / 33

Blood

Blood. Chapter 17. Review: What is Blood?. Only fluid connective tissue Plasma Formed elements Erythrocytes (RBC’s) Leukocytes (WBC’s) Thrombocytes ( platelets ) Hematocrit is % of RBC’s out of total blood volume. 2. Centrifuge. Plasma (55% of whole blood).

bunny
Download Presentation

Blood

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Blood Chapter 17

  2. Review: What is Blood? • Only fluid connective tissue • Plasma • Formed elements • Erythrocytes (RBC’s) • Leukocytes (WBC’s) • Thrombocytes(platelets) • Hematocrit is % of RBC’s out of total blood volume 2 Centrifuge Plasma(55% of whole blood) Buffy coat:leukocyctes and platelets(<1% of whole blood) Formed elements Withdraw blood and place in tube Erythrocytes(45% of whole blood) 1 Figure 17.1

  3. Physical Characteristics • pH 7.35 – 7.45 • Temperature about 38°C (normal 37°C) • Approximately 8% body weight • Males: 5 – 6 L • Females: 4 – 5 L • Human blood is NEVER blue • Scarlet (oxygen-rich) • Dark red (oxygen-poor)

  4. Functions • Distribution • O2 and nutrients in • CO2 and wastes out • Hormones to target cells • Regulation • Body temp • Absorb/distribute heat • pH • Buffer systems • Bicarbonate atoms • Fluid volumes • Salts and proteins • Protection • Prevent blood loss • Clot formation • Platelets and proteins • Prevent infection • Fight foreign invaders • Antibodies, WBC’s, and complement proteins

  5. Plasma • 90% water • 100+ dissolved solutes • Proteins • Albumin: osmotic pressure • Globulin: antibodies and transport proteins • Fibrinogen: role in clotting • Nutrients: fuel from digestive tract • Electrolytes: osmotic pressure and pH • Gases: O2 and bicarbonate ions bound to hemoglobin • Hormones

  6. Formed Elements • ‘Cell’ types • WBC’s are complete cells • RBC’s without nuclei or organelles • Platelets are cell fragments • Live only a few days • Don’t divide, but are renewable • Where does hematopoiesis occur?

  7. Erythrocytes (RBC’s) • Biconcave shape • Large SA to small volume • Flexibility to pass through vessels • Primarily composed of hemoglobin • Readily binds/transports O2 and CO2 • Generate ATP anaerobically • Means what? • No mitochondria

  8. Hemoglobin (Hb) • Transports respiratory gases • Globin protein bound to 4hemescontaining iron • 1 RBC about 250 million Hb molecules = 1billion O2 • Normal values • 14-20g/100ml infants • 13-18g/100ml males • 12-16g/100ml females • Specific types • Oxyhemoglobin • Deoxyhemoglobin • Carbaminoglobin (binds amine groups)

  9. Hematopoiesis • Hemocytoblasts (stem cells) commit to a formed element • Unchangeable after • Growth factors and hormones ‘push’ to specialize • Erythropoiesis 15 days (+ 2 to mature) • Leukopoiesis discussed later

  10. Hormonal Control of Erythropoiesis • Erythropoietin (EPO) release by kidneys • Decreased RBC numbers (trauma) • Decreased O2 availability (altitude) • Increased O2 demand (exercise) • Insufficient hemoglobin (iron deficiency) • EPO inhibited by high O2 or RBC count • Type of feedback? • Kidney fails = no EPO = low RBC count • EPO injections • Abuse by athletes to increase hematocrit

  11. Imbalance Start Normal blood oxygen levels Stimulus: Hypoxia due to decreased RBC count, decreased availability of O2 to blood, or increased tissue demands for O2 Imbalance Increases O2-carrying ability of blood Reduces O2 levels in blood Erythropoietin stimulates red bone marrow Kidney (and liver to a smaller extent) releases erythropoietin Enhanced erythropoiesis increases RBC count Erythropoiesis Homeostasis

  12. Dietary Regulation • Iron is key • 65% stored in hemoglobin (Hb) • Free ions are toxic, so stored bound to proteins • Some lost daily • B12 and folic acid • Necessary for DNA synthesis • Roles in mitosis • AA’s, lipids, and carbs too

  13. Life and Death of Erythrocytes • 100 – 120 day • Cells age and Hb degenerates • Engulfed by macrophages • Components of Hb separated • Hemebilirubin urobilinogen • Bilirubin binds albumin and moves to liver • From liver with bile to intestines • Out in feces • Iron saved and bound to protein for storage • Globin metabolized to AA’s and into circulation • See fig. 17.7

  14. Erythrocyte Disorders • Anemias: low O2carrying capacity; sign not disease • Insufficient number of RBC’s • Hemorrhagic anemia: blood loss; acute or chronic • Hemolytic anemia: lysing of RBC’s early from parasites, mismatched blood • Aplastic anemia: disruption/destruction of red bone marrow • Low Hb content • Iron-deficiency anemia: inadequate iron intake • Pernicious anemia: deficiency of B12 in diet • Abnormal Hb • Thalassemia: absent or faulty globin chain • Sickle-cell anemia: defective gene codes for abnormal HB • Polycythemias: high number of RBC’s • Blood doping: remove and replace RBC’s = artificial polycythemia • Secondary polycythemia: EPO increase when O2 levels down (high altitude)

  15. Leukocytes • Not confined to blood vessels • Chemotaxis to locate damage/infection • Working WBC’s increase production of WBC’s • Leukocytosis: high WBC count response to infection • General types • Granulocytes • Agranulocytes

  16. Granulocytes • Characteristics • Larger and shorter-lived than RBC’s • Phagocytic cells with lobed nuclei • Cytoplasmic granules • Types • Neutrophils: body’s 1st phagocytic cells • Eosinophils: fights parasitic worms and lessens allergies by phagocytizing immune complexes • Basophils: release histamine, a vasodilator

  17. Agranulocytes • Characteristics • Spherical or kidney like nuclei • Types • Lymphocytes • T cells: direct action against infected cells • B cells: become cells that produce antibodies • Monocytes • Become macrophages after leaving blood supply • Active phagocytes that also activate lymphocytes

  18. Recognizing Leukocytes

  19. Leukopoiesis • All leukocytes originate from hemocytoblasts • Either myeloid or lymphoid stem cell lines • Myeloid stem cells • Myeloblasts • Monoblasts • Lymphoid stem cells • Lymphoblasts • Similarities to erythropoiesis

  20. Hormonal Control of Leukopoiesis • Interleukins • Numbered (IL – 1, IL – 2, IL – 3, etc.) • Colony-stimulating factors (CSFs) • Named for the WBCs stimulated (granulocyte – CSF) • Hematopoietic factors from red bone marrow and WBCs too • Encourage maturation and division • Used clinically after chemotheraphy, stem cell transplants, or in AIDS patients

  21. Leukocyte Disorders • Leukpenia: abnormal WBC count; usually drug (anticancer) induced • Leukemia: cancerous conditions named for cell type involved • Bone marrow fills with cancerous leukocytes • Numerous, nonfunctional WBCs produced • Myelocytic (myeloblasts) or lymphocytic (lymphocytes) • Acute (blast-type cell) or chronic (later cell stage) • Mononucleosis: epstein-barr virus; excessive agranulocytes

  22. Platelets • Fragments of megakaryocytes • Myeloid stem cell line • Mitotic without cytokinesis • Anucleate, live about 10 days • Thin blue cytoplasm with a few purple granules • Form temporary plugs during the clotting process • Thrombopoietin regulates their production

  23. Hemostasis • Stoppage of bleeding • Platelets, clotting factors, and injured tissues involved • 3 phases • Vascular spasm • Rapid vasoconstriction of damaged vessel • Efficiency increase with damage • Plug formation • Platelets bind to exposed collagen in damaged vessel • Positive feedback of chemical messengers to attract more platelets • Coagulation • Liquid to gel • Endothelial cells (extrinsic) and platelets (intrinsic) factors interact with clotting factors • Fibrous tissue eventually regrows to permanently seal

  24. Coagulation Process • Phase One: prothrombin activator pathways • Intrinsic: factors in blood already • Slower b/c many steps • Extrinsic: tissue factor III (TFIII) outside blood in tissue • Faster b/c skips steps • Phase Two: thrombin activation • Prothrombin activator catalyzes • Prothrombin protein to thrombin enzyme • Phase Three: fibrin mesh produced • Fibrinogen catalyzed to fibrin • Fibrin glues platelets together = clot • Plasma becomes gel-like • Factor XIII strengthens, sealing fibrin together • Fig 17.14 http://www.astrographics.com/cgi-bin/ase/ase.cgi?affiliate=sciam&mode=display&gallery=3&type=medical&color=&keywords=&page=2

  25. Clot Retraction and Repair • Contractile proteins of proteins pull fibrin strands together • Stabilizes clot • Platelet derived growth factor (PDGF) stimulates smooth muscle and fibroblast mitosis to rebuild wall • Fibrinolysis dissolves clots • Beneficial once healed • Prevents build up in vessels

  26. Controlling Clot Formation • Limit growth through constant blood circulation • Keeps [clotting factors] low in given locations • Inhibit thrombin (intrinsic pathway too) • Fibrin binds to prevent spread • Antithrombin III (in plasma) inactivates • Heparin enhances antithrombin III and inhibits pathway • Prevent clotting • Antithrombics (NO) and undamaged vessel tissue prevents platelet adhesion • Blood thinner administration (aspirin, warfarin)

  27. Hemostasis Disorders (Thromboembolytic) • Undesirable clot formation • Thrombus: clot in an unbroken blood vessel • Can block normal blood flow = tissue death • Coronary thrombus may cause heart attack • Embolus: free floating clot • Embolism once blood vessel is obstructed • Pulmonary embolisms inhibit obtaining O2 • Cerebral embolisms may cause strokes

  28. Hemostasis Disorders (Bleeding) • Problems controlling bleeding • Thrombocytopenia: platelet number is low • Spontaneous bleeding all over body from mov’t • Purple blotches on skin signify • Liver can’t produce procoagulants • Vitamin K deficiencies • Other liver diseases • Hemophilia: genetic disorder causing missing clotting factors • Type depends on affected factor

  29. Human Blood Groups • RBC membranes have glycoprotein antigens on external surface • Unique to individuals • Recognized as foreign by other individual bodies • Agglutinogens because they promote agglutination (clumping) • Presence or absence of antigens used to classify blood groups

  30. ABO Blood Groups • Two antigens (A and B) on RBC surface in blood • Blood types: A, B, AB, and O • Two antibodies (anti-A and anti-B) in the plasma • Non-complement to blood type produced • See chart below • Agglutinogens and complement antibodies can’t mix w/o hemolytic reaction • Newborns don’t start development until 2 months after birth; complete between 8 and 10

  31. Rhesus (Rh) Blood Groups • Multiple agglutinogens • C, D, and E most common • Named for monkey first discovered in • Rh+ individuals have the D antigen • Lack anti-Rh antibodies produced in plasma • Can receive Rh+ or Rh- blood • Rh- individuals lack the D antigen • Lack anti-Rh, but can produce w/ Rh+ transfusion • 1st occurrence = sensitization (no reaction), starts production • 2ndoccurrence+ = attack and lysis of donor RBC’s

  32. Transfusions Gone Wrong • Transfusion reactions when mismatched blood is exchanged • Recipient's plasma attacks donor’s RBC’s • Donor’s plasma may attack recipient’s RBC’s, but less serious condition • RBC’s hemolyse or phagocytize • O2 carrying capacity drops • Agglutination clogs small vessels • Hb released into blood  kidney damage possible

  33. Diagnostic Blood Tests • Hematocrit: % of RBC in blood • Differential WBC count: different number of WBC cells • Platelet count: ability of blood to clot • Complete blood count (CBC): number of formed elements, hematocrit, Hb, and RBC size • Hemoglobin: amount in blood

More Related