1 / 17

Queue vs Priority Queue

6. 5. 4. 3. 2. 1. 215. 331. 110. 111. 307. 230. queue. 1. 2. 3. 4. 5. 6. 230. 307. 111. 110. 331. 215. 3. 6. 1. 2. 5. 4. 215. 331. 110. 111. 307. 230. priority queue. 1. 2. 3. 4. 5. 6. 110. 111. 215. 230. 307. 331. Queue vs Priority Queue.

caden
Download Presentation

Queue vs Priority Queue

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6 5 4 3 2 1 215 331 110 111 307 230 queue 1 2 3 4 5 6 230 307 111 110 331 215 3 6 1 2 5 4 215 331 110 111 307 230 priority queue 1 2 3 4 5 6 110 111 215 230 307 331 Queue vs Priority Queue

  2. Priority Queue Implementations • Keep them sorted! (Have we implemented it already?) • Appropriate if the number of items is small • Sorted Array-based implementation • Linked List-based implementation • Binary search tree implementation items 110 111 215 230 307 331 . . . items 331 307 230 215 111 110 230 111 331 110 215 307

  3. But then… what kind of tree is this? 110 215 111 331 230 307 112 342 349

  4. MaxHeaps, MinHeaps and Heaps • A minheapis a complete binary tree in which each element is less than or equal to both of its children • A maxheapis ______________________________ • A minheap keeps the smallest valued element readily available • A maxheap keeps the ______ valued element readily available • Which data Structure to extend to create a heap? • Two binary tree extensions are needed in a heap • it is a binary tree (a complete one) • its elements must be Comparable • Three primary operations for minheaps • add new element to the heap • find the minimum value • remove the minimum value

  5. 110 zebra 215 111 tiger moose 331 230 307 panda lion koala 110 zebra 230 215 tiger moose 307 111 331 panda lion koala Maxheap, Minheap, or Neither?

  6. javafoundations.MaxHeap //*************************************************************** // MaxHeap.java Java Foundations // Defines the interface to a max heap. //*************************************************************** package javafoundations; public interface MaxHeap<T extends Comparable<T>> extends BinaryTree<T> { // Adds the specified object to the heap. public void add (T obj); // Returns a reference to the element with the highest value in // the heap. public T getMax (); // Removes and returns the element with the highest value in the // heap. public T removeMax (); }

  7. Adding an Element to a MaxHeap • Insert new course: 349 in a maxheap! • Strategy • Insert newItem into the bottom of the tree • “Trickle up” new item to appropriate spot in the tree 331 349 331 307 349 307 331 307 230 349 230 230 110 215 111 110 215 111 110 215 111

  8. Removing the Max from a MaxHeap • Remove old course: 331. • Step 1: Delete (& remember to return) the item in the root • Results in disjoint heaps • Step 2: Copy the item from the last node into the root, resulting in a “semiheap” 331 331 111 307 230 307 230 110 215 111 110 215

  9. 307 307 111 230 215 230 110 215 110 111 Heapify: Fixing a heap with a small problem • Step 3: Transform the semiheap back into a heapby “trickling down” the smallest-of-three element • Performed by the recursive calls to heapify 111 307 230 110 215 How many times do we need to call heapify?

  10. Heap Implementations • Using LinkedBinaryTree • Using ComputedLinkArrayTree • Which is better? 331 0 331 307 1 230 2 110 3 215 307 230 4 111 5 6 7 110 215 111 8

  11. Can we use a Heap to sort? • Algorithm: • Insert the elements of an array into a heap, one-by-one • Repeatedly RemoveMaxand put it back into the array • Efficiency? • More efficient strategy • The second half of the array represents a bunch of (one-node) heaps • Use heapify() to fix the first-half nodes

  12. 6 6 6 10 3 5 9 10 9 10 9 6 9 2 10 3 2 5 3 2 5 3 2 5 Initial heap. Next: heapify(2) After heapify(2) Next: heapify(1) After heapify(1) Next: heapify(0) Final heap tree (Max)Heapsort example Initial input array 6 3 5 9 2 10 for (int i = n/2 - 1; i >= 0; i--) heapify(i); Heapsort efficiency?

  13. Next: Use LinkedMaxHeap to implement PQs //*************************************************************** // MaxHeap.java Java Foundations // Defines the interface to a max heap. //*************************************************************** package javafoundations; public interface MaxHeap<T extends Comparable<T>> extends BinaryTree<T> { // Adds the specified object to the heap. public void add (T obj); // Returns a reference to the element with the highest value in // the heap. public T getMax (); // Removes and returns the element with the highest value in the // heap. public T removeMax (); }

  14. Since PriorityQueue implements Queue… //******************************************************************** // Queue.java Java Foundations // // Defines the interface to a queue collection. //******************************************************************** package javafoundations; public interface Queue<T> { // Adds the specified element to the rear of the queue. public void enqueue (T element); // Removes and returns the element at the front of the queue. public T dequeue(); // Returns a reference to the element at the front of the queue // without removing it. public T first(); // Returns true if the queue contains no elements and false // otherwise. public boolean isEmpty(); // Returns the number of elements in the queue. public int size(); // Returns a string representation of the queue. public String toString(); }

  15. The PriorityQueue Class // *************************************************************** // PriorityQueue.java Java Foundations // // A data structure that works like a queue, but instead of // FIFO, always dequeues the item with the highest priority. // Uses a maxheap to store and sort items. //*************************************************************** package javafoundations; import javafoundations.exceptions.*; public class PriorityQueue<<T> extends Comparable<T>> implements Queue<T> { private LinkedMaxHeap<T> heap; //---------------------------------------------------------------- // Creates a new, empty priority queue. //---------------------------------------------------------------- public PriorityQueue() { heap = new LinkedMaxHeap<T>(); } (more…)

  16. //------------------------------------------------------------- // Enqueues an Comparable element. //------------------------------------------------------------- public void enqueue(T element) { heap.add(element); } //------------------------------------------------------------- // Dequeues the max of all elements in the heap. //------------------------------------------------------------- public T dequeue(){ try { T temp = heap.removeMax(); return temp; } catch(EmptyCollectionException ece) { System.out.println(ece); } return null; } (more…) The PriorityQueue Class

  17. The PriorityQueue Class public T first() { return heap.getMax(); } public boolean isEmpty() { return heap.isEmpty(); } public int size() { return heap.size(); } public String toString() { return heap.toString(); }

More Related