1 / 16

Deuteron Polarimetry at COSY

Deuteron Polarimetry at COSY. David Chiladze IHEPI, Tbilisi State University IKP, Forschungszentrum Jülich. Outline. Introduction Experimental tools Beam polarimetry Summary & outlook. Introduction: NN Scattering. Characterization requires precise data for P hase S hift A nalyses

calais
Download Presentation

Deuteron Polarimetry at COSY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deuteron Polarimetry at COSY David Chiladze IHEPI, Tbilisi State University IKP, Forschungszentrum Jülich

  2. Outline • Introduction • Experimental tools • Beam polarimetry • Summary & outlook SPIN 2006

  3. Introduction: NN Scattering • Characterization requires precise data for Phase Shift Analyses • Current experimental status of NN data: • pp system (I=1) well-known up to 2.5 GeV (EDDA): Majority of data on unpolarized, single, and double polarized observables • np system (I=0) poorly known →ANKE will provide high-quality data in forward/backward region np charge-exchange ANKE range d/d np forward np charge-exchange ANKE range Ayy np forward SPIN 2006

  4. Introduction: Motivation • Double polarized experiments at ANKE • np spin physics • Single polarized experiment • Polarized charge-exchange reaction dp→(2p)n • Direct reconstruction of the spin-dependent np amplitudes via measurement of and T20 & T22 (Tn = 0.6 – 1.15 GeV) • Aim of first measurement (Td = 1.2 GeV) • Feasibility of the experiment • Polarimetry standards at ANKE (Proposal #152, “Spin physics from COSY to FAIR”) → SPIN 2006

  5. ANKE EDDA LEP Experimental tools: COSY • Polarized and unpolarized proton and deuteron source • Protons up to 2.88 GeV • Deuterons up to 2.23 GeV • Internal and external experiments SPIN 2006

  6. Slope = 1.05 ± 0.06 Offset = 0.04 ± 0.01 Pz≈ 75 % Pzz ≈ 60 % Experimental tools: LEP & EDDA → L E P S.Kato et al. Nucl.Inst.Meth. A 238, 453 (1985) E.J. Stephenson DeuteronPolarimeter for EDM Search. → • dp → dp • Td = 270 MeV • Ay, Ayy (65° – 95°)c.m. • dC → dC • Td = 75.6 MeV • Ay(40°) = 0.61 ± 0.04 E D D A K. Sekiguchi et al. Phys.Rev. C 65, 034003 (2002) SPIN 2006

  7. Experimental tools: ANKE setup Td = 1170 MeV • dp → dp • dp → 3Heπ0 • dp → dpspπ0 • dp → (pp)n → → → → SPIN 2006

  8. Low branch High branch Beam polarimetry: Reaction identification dp → dp dp → 3Heπ0 mπ0 dp → dpspπ0 dp → (pp)n SPIN 2006

  9. Beam polarimetry: Ay, Ayy measurement dp → dp ANKE ANKE dp → 3Heπ0 np → dπ0 dp → (pp)n SAID (Tn = 585 MeV) ANKE ANKE Depolarization less then 4% D. Chiladze et al. Phys. Rev. STAB 9, 050101 (2006) SPIN 2006

  10. s d 2 2 2 2 Þ g + b d e , T , T , , 20 22 dq Beam polarimetry: CE reaction D.Chiladze et al. Phys. Let. B 637, 170 (2006) → dp→(pp)1S0 n Axx (T22) Transition from deuteron to (pp)1S0:pn  np spin flip Obtain np elementary spin-dependent amplitudes: Results: • Method works at Tn = 585 MeV • Application to “uncharted territory” Next step: • Double polarized → Cy,y, Cx,x(using PIT see talk K. Grigoriev) Td = 1170 MeV Ayy (T20) Cy,y Cx,x SPIN 2006

  11. Results eyI = eyIII Energy ramping eyI = -0.213 ± 0.005 1.8 GeV eyIII = -0.216 ± 0.006 eyyI = eyyIII II eyyI = 0.057 ± 0.003 1.2 GeV 1.2 GeV eyyIII = 0.059 ± 0.003 I III Beam polarimetry: Polarization export • Polarized deuteron beam at 3 energies • Calibration of the beam polarization of arbitrary energy • Super cycle: Td = 1.2 GeV, 1.8 GeV. Time SPIN 2006

  12. Summary & Outlook • Polarisation standard at 1.2 GeV • Analysing power measurement • Polarisation export technique • Higher beam energy (up to 2.3 GeV) • Double polarized dp→(2p)n reaction → → SPIN 2006

  13. PzEDDA = (0.95±0.02)PzLEP + (0.04±0.01) • LEP (Td = 76 MeV) • dC → dC • EDDA (Td = 270 MeV) • dp → dp • ANKE (Td = 1170 MeV) • dp → dp • dp → 3Heπ0 • dp → dpspπ0 • dp → (pp)n SPIN 2006

  14. ANKE EDDA LEP Experimental facility • LEP (Td = 76 MeV) • EDDA (Td = 270 MeV) • ANKE (Td = 1170 MeV) SPIN 2006

  15. dp→psp (np) → → pd→psp (pn) np forward Introduction: np elastic (small angle) → p → deuteron beam: deuteron target: → → d ↑ n p d beam: up to 1.1 GeV for np d target: up to 2.8 GeV for pn D ↑ p dp observables: d/d, T20,T22, Ay,y, ... ↑ psp n quasi-free np observables:Ay, Ayy SPIN 2006

  16. → dp→(pp)1S0n → → pd→(pp)1S0n np charge-exchange Introduction: np elastic (large angle) n deuteron beam: deuteron target: → → d ↑ n p d beam: up to 1.1 GeV for np d target: up to 2.8 GeV for pn D ↑ p dp observables: d/d, T20,T22, Ay,y, ... ↑ psp ↓ p quasi-free np observables:Ay, Ayy, Dyy,Axy,y,... SPIN 2006

More Related