1 / 18

Design, Optimization and Implementation of Fresnel Domain Computer Generated Holograms (CGHs)

Design, Optimization and Implementation of Fresnel Domain Computer Generated Holograms (CGHs). Diffraction optical elements: reconstruct semi-arbitrary 2D or 3D optical fields

ceana
Download Presentation

Design, Optimization and Implementation of Fresnel Domain Computer Generated Holograms (CGHs)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design, Optimization and Implementation of Fresnel Domain Computer Generated Holograms (CGHs) • Diffraction optical elements: reconstruct semi-arbitrary 2D or 3D optical fields • Numerical design: flexible encoding strategy high diffraction efficiency and uniformity • Avoid complications from conventional optical recording process • History: Detour (Brown, 1966), Kinoform (Lesem, 1969) • Applications: beam shaping, optical trapping, communications, 3D television, optical testing • Pure phase: binary*, multi-level • Fabrication method: electron-beam lithography

  2. Motivation • Increasing demand for smaller sized features, large working area semiconductor devices (e.g. LCD manufacture) need novel lithographic methods • CGHs promising candidates for replacing conventional 2D or 3D lithographic techniques • Key advantages: • Depth of focus control • Robust design • Standard fabrication • Simple optical setup • Cost effective • Non-contact • Parallel exposure • High resolution • Large working area • 2D or 3D patterning In-line CGH Lithography Final Device Processing

  3. Problem Definition • Performance of CGHs depends primarily on optimization algorithm and fabrication method • Previous work: X-ray (Jacobsen, 1992), UV (Wyrowski, 2001), EUV (Isoyan, 2006) • Local search methods: inefficient, sensitive to initial point, get trapped at local minima • Current multi-search schemes: optimize small size CGHs Back-propagation CGH Plane Reconstruction Plane Encoding CGH Plane Reconstruction Plane Free parameter Desired Pattern Inverse Problem

  4. Encoding Process CGH Plane CGH: encoded signal Problem Definition • Performance of CGHs depends primarily on optimization algorithm and fabrication method • Previous work: X-ray (Jacobsen, 1992), UV (Wyrowski, 2001), EUV (Isoyan, 2006) • Local search methods: inefficient, sensitive to initial point, get trapped at local minima • Current multi-search schemes: optimize small size CGHs Forward-propagation CGH Plane Reconstruction Plane Decoding Reconstruction Plane CGH Plane Photoresist Exposure Final Pattern Inverse Problem

  5. Reduced Complexity Hybrid Optimization Algorithm (RCHOA) • Efficient optimization of Fresnel binary and multi-level phase CGHs • Reduce problem complexity by introducing: Local Diffuser Phase Elements (LDPE) and Local Negative Power Elliptical Phase Elements (LNPEPE) masks • Optimize reduced subset of variables • Key features: • Multi-point parallel search • Robust: insensitive to initial points • Flexible choice of encoding signal • Reduced complexity • Optical efficient results • Computationally efficient: GPU implementation

  6. Off-Axis Geometry System Geometries TIR Geometry In-Line Geometry*

  7. Local Diffuser Phase Elements Mask • Maximize information transfer: amplitude (reconstruction plane) to phase (CGH plane) • Step 1: decompose desired pattern into Nbp binary patterns • Step 2: assign local diffuser phase element to each pattern • Diffusivity of qth element controlled by: and • LDPE mask: Mask Decomposition CGH Plane Reconstruction Plane Phase Binary Phase CGH Desired Amplitude Mask LDPE Mask Random matrix x Fresnel Back-Propagation Binary function Amplitude Multi-level Each element has different diffusivity • Reduced number of DOF:

  8. Local Negative Power Elliptical Phase Elements Mask • Maximize information transfer: amplitude (reconstruction plane) to phase (CGH plane) • Step 1: decompose desired pattern into Nbp binary patterns • Step 2: apply LNPEPE to each pattern • Controlled parameters: • LNPEPE mask: CGH Plane Reconstruction Plane Binary pattern center coordinates Phase Desired Amplitude Mask LNPEPE Mask Truncation window Binary function x Fresnel Back-Propagation Amplitude • Reduced number of DOF: Negative power elliptical phase

  9. Genetic Algorithms Block • Multi-point optimization scheme • Inspired in biological evolution: “survival of the fittest” • Reduced complexity allow optimizing large populations • Individual: • or Global minimum The MathWorksTM

  10. MER Block • Local search, iterative optimization method • Refine solution: fast convergence • Compare results with: diffracted field (DF) and simulated optically recorded hologram (SORH) encoding strategies

  11. Error Metrics Photoresist Contrast Curve • Four considered error metrics • Choice of error metric is application dependent - Mean square error: bias estimator ( and ) dose Amplitude Constraint - Diffraction efficiency Signal Power Effective efficiency inside pattern Input power Signal Power Inside Hsize (G. Zhou, et al., 2000) - Additional metrics: L1 (bias) and normalized cross-correlation (similarity), hybrid

  12. Reconstruction from Multi-Level CGH at Photoresist Plane (Before Exposure) Intensity Optimized LDPE Mask Phase Map: Optimized Binary CGH Reconstruction from Binary CGH at Photoresist Plane (Before Exposure) Intensity Optimization Results Main Parameters: • Optimization example: • - binary phase CGH: resolution target - LDPE encoding strategy Desired Pattern Convergence MER Block Convergence GA Block Intensity Intensity

  13. Optimization Results • Optimization example: • - binary phase CGH: resolution target - LDPE encoding strategy • Sensitivity Analysis: problem parameters (e.g. cross-over fraction, population size, etc.) • Parallel implementation on graphic processing unit: speedup >180X • - GPU computational time: 4.47 hours • - CPU estimated time: 16.48 days! Comparison of Encoding Strategies After GAs Block: Multi-Level CGH

  14. Extending the Depth of Focus • Extend DOF: tolerate potential axial misalignments during exposure process • Modify RCHOA to impose constraints at multiple planes • Regular DOF: Multiple Plane Constraint Error Comparison: Binary CGH Extended DOF CGH Extended:

  15. CGH Fabrication Fabrication Process • Fabricated using electron-beam lithography • Binary phase CGH • Resist: Hydrogen Silsesquioxane (HSQ) E-beam Patterning Fused Silica Aluminum Remove Aluminum & Develop HSQ HSQ Scanning Electron Microscope Image of Fabricated Sample 50μm

  16. Characterization of Fabricated CGHs • Implemented methods: evaluation algorithm*, optical characterization*, exposure test • Evaluation algorithm: analyze fabricated CGH 2D error map (correct over/under dose) Stitched Binarized Fabricated CGH Block Diagram of Evaluation Algorithm 2D Error Map

  17. Characterization of Fabricated CGHs • Implemented methods: evaluation algorithm*, optical characterization*, exposure test • Optical characterization: measure reconstructed intensity Optical Setup: Coherent Illumination Measured Reconstructed Intensities Binary CGH: DF Encoding Strategy Binary CGH: Diffuser Encoding Strategy • Fabricated CGHs not fully optimized • Eliminate speckle using partial coherence illumination 100μm

  18. Sensitivity Analysis • Estimate and assist in the correction of potential fabrication errors • Considered errors: e-beam over/under dose, proximity effect, uniform/nonuniform phase, stitching and positional errors Dilation Test: Over Dose Error Stitching Error Analysis MSE Offset Distance

More Related