1 / 32

Next Generation Science Standards: Looking Back, Moving Forward

Next Generation Science Standards: Looking Back, Moving Forward. Groundhog day…Over. Looking Back. Sounded like a good idea at the time. Drilling Down. Fishing For Feedback. Remembering Why…. Trying to stay out of…. January Feedback. Concerns that there was still too much material

chace
Download Presentation

Next Generation Science Standards: Looking Back, Moving Forward

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Next Generation Science Standards: Looking Back, Moving Forward

  2. Groundhog day…Over

  3. Looking Back

  4. Sounded like a good idea at the time

  5. Drilling Down

  6. Fishing For Feedback

  7. Remembering Why…

  8. Trying to stay out of…

  9. January Feedback • Concerns that there was still too much material • Suggestions for a few additional topics to include • Increase language clarity • Concerns about including and addressing engineering and technology • Concern about the amount of support that will be needed for implementation of the standards. • Confusion about the coding/naming of the performance expectations.

  10. Response to Feedback • A review of the central focus of each disciplinary core idea (DCI) from the Framework resulted in the removal of about 33% of the performance expectations and associated DCIs, while retaining the progression of DCIs across the grade bands. • Engineering Design Standards • “Storylines” with guiding questions were added to the beginning of each grade band and section to describe the context and rationale for the performance expectations. • The “All Standards, All Students” appendix was expanded to include several vignettes about implementation of the NGSS with diverse student groups. • Performance expectations names were changed from lowercase letters to numbers to avoid confusion with the DCI names (e.g. MS-LS1-a became MS-LS1-1.

  11. What’s Different about the Next Generation Science Standards?

  12. Conceptual Shifts in the NGSS • K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World. • The Next Generation Science Standards are student performance expectations – NOT curriculum. • The science concepts build coherently from K-12. • The NGSS Focus on Deeper Understanding of Content as well as Application of Content. • Science and Engineering are Integrated in the NGSS from K–12. • NGSS content is focused on preparing students for the next generation workforce. • The NGSS and Common Core State Standards ( English Language Arts and Mathematics) are Aligned.

  13. Three Dimensions Intertwined • The NGSS are written as Performance Expectations • NGSS will require contextual application of the three dimensions by students. • Focus is on how and why as well as what

  14. Weaving Practices with Content – NotJust the NGSS • K-12 Science Education Framework • New Advanced Placement Coursework and Assessment • PISA 2015 • Vision and Change in Undergraduate Biology • A New Biology for the 21st Century • Scientific Foundations for Future Physicians

  15. How do we know this approach works? 4 strands Motivation and Engagement 6 strands – incorporates affective domain

  16. Goals of Laboratory Experiences based on ALR Findings • Mastery of subject matter. • Developing scientific reasoning. • Understanding the complexity and ambiguity of empirical work. • Developing practical skills. • Interest in science and science learning. Currently, research indicates significant numbers of students do not have quality opportunities to engage in science and engineering practices

  17. Findings from ALR Typical Lab Practice • Content Mastery • No better or worse than other modes of instruction. • Scientific Reasoning • Aids development of some aspects • Interest in Science • Some evidence of increased interest. Integrated Dimensions • Content Mastery • Increased mastery of subject matter compared to other modes of instruction. • Scientific Reasoning • Aids development of more sophisticated aspects • Interest in Science • Strong evidence of increased interest.

  18. Science and Engineering Practices, Not just teaching strategies • Science and Engineering Practices are how scientific knowledge is acquired • While Practices should be used in instruction, all students need to demonstrate achievement in their use and application

  19. Progressing to Understanding

  20. Building Understanding in Middle School – Concept Bundling Matter and Its Interactions • Within this DCI, 4 of the 8 Practices are highlighted. For instruction, additional practices would be used to build toward these understandings. The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter. Reacting substances rearrange to form different molecules, but the number of atoms is conserved. Some reactions release energy and others absorb energy. • MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. • MS-PS1-4. Develop a model that predicts and describes the changes in atomic motion caused by adding or removing thermal energy from a pure substance and that result in either a temperature change or change of state. • MS-PS1-5. Develop and use a model to describe a mechanism of atoms rearranging during a chemical reaction to show that atoms, and therefore mass, are conserved. • MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* • MS-PS1-1. Develop molecular-level models to describe the atomic composition of, and differences between, simple molecules and extended structures. • MS-PS1-2. Analyze and interpret data on the properties of substances before and after they interact to determine if a chemical reaction has occurred.

  21. Bundling, its what for understanding • Teaching, or attempting to teach, individual performance expectations lead to a disjointed and stunted view of science. • Developing instructional materials and instruction should be viewed as leading to understanding the larger core idea • Coherent instructional materials and instruction should focus on a Disciplinary Core Idea (or set of them) rather than discrete pieces that are never tied together.

  22. Instructional Bundling – HS Physical Sciences Instructional Unit: Conservation and Interactions of Matter • Instructional Units should be developed with these performances as the end point or target. • Instruction should also connect these performances with the Disciplinary Core Idea PS1: Matter PS2: Forces PS3: Energy • HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. • HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. • HS-PS1-4. Develop and use a model to illustrate that the release or absorption of energy from a chemical system depends upon the changes in total bond energy. • HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. • MS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials. HS-PS1-3. Develop and use models to illustrate that the different forms of energy, both at the microscopic and macroscopic scale, can be accounted for as either motions of particles or energy stored in fields.

  23. Instructional Bundling – HS Physical Sciences Instructional Unit: Conservation and Interactions of Matter • Within this instructional unit, 4 of the eight practices are highlighted in the standards. • Classroom instruction should use additional practices to allow students to fully engage in the learning • The classroom instruction should have students ask questions, use investigations and analyze data to develop the explanations. PS1: Matter PS2: Forces PS3: Energy • HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. • HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. • HS-PS1-4. Develop and use a model to illustrate that the release or absorption of energy from a chemical system depends upon the changes in total bond energy. • HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. • HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials. HS-PS1-3. Develop and use models to illustrate that the different forms of energy, both at the microscopic and macroscopic scale, can be accounted for as either motions of particles or energy stored in fields.

  24. Looking Ahead

  25. Future Support for NGSS • Form NGSS Network to support state adoption and implementation • Clarify and communicate meaning of College and Career Readiness, STEM readiness with respect to NGSS • Provide tools and guidance to states and the field to build capacity to deliver NGSS in the classroom • Accountability and Assessment • Communications and Coalition Building

  26. NGSS Network • Designed to build upon BCSSE and Lead State initiative • CSSS full partner in the network • Annual meeting for all participating states (February) • Smaller working groups during the year focused on specific issues such as policy and accountability • Adoption/Implementation Planning Support

  27. College, Career, STEM Readiness • Additional Model Course Maps including AP and CTE Pathways • Environmental Scan of existing course pathways in science • Entry level course analytics in 2-, 4-, technical college and university • STEM Career analysis • Policy recommendations in science

  28. Building Capacity • Science EQuIP Rubric • Publisher’s Criteria • Develop criteria for quality science education PD that could be used in a rubric • Model Curriculum Frameworks • STEM Works

  29. Assessment and Accountability • Identifying appropriate indicators for accountability in science • Sample public reporting and related guidance • Briefing of assessment vendors • Research access versus interest of students • Research state course taking data • Support to states to set goals for science impact/achievement • Underserved populations and incentives • Cross Network exploratory meeting to discuss interest, timelines, etc. related to assessment

  30. Communications and Coalition Building • Fact Sheets • Case Making Support • Legislative/stakeholder briefing material • Business and third party coalition building • General communications support

  31. Seriously… Thank You

  32. But, now the fun starts “The how thinker gets problems solved effectively because he wastes no time with futile ifs.” -Norman Vincent Peale

More Related