1 / 110

Infrastructure Security

Infrastructure Security. Chapter 10. Objectives (1 of 2). Construct networks using different types of network devices. Enhance security using security devices. Understand virtualization concepts. Enhance security using NAC/NAP methodologies.

christina
Download Presentation

Infrastructure Security

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Infrastructure Security Chapter 10

  2. Objectives (1 of 2) • Construct networks using different types of network devices. • Enhance security using security devices. • Understand virtualization concepts. • Enhance security using NAC/NAP methodologies. • Identify the different types of media used to carry network signals. • Describe the different types of storage media used to store information.

  3. Objectives (2 of 2) • Use basic terminology associated with network functions related to information security. • Describe the different types and uses of cloud computing.

  4. Key Terms (1 of 3) • Basic packet filtering • Bridge • Cloud computing • Coaxial cable • Collision domain • Concentrator • Data loss prevention (DLP) • Firewall • Hypervisor • Hub • Infrastructure as a Service (IaaS) • Internet content filters • Load balancer • Modem • Network access control

  5. Key Terms (2 of 3) • Network Access Protection (NAP) • Network Admission Control (NAC) • Network-Attached Storage (NAS) • Network interface card (NIC) • Network operations center (NOC) • Next-generation firewall • Platform as a Service (PaaS) • Private branch exchange (PBX) • Proxy server

  6. Key Terms (3 of 3) • Router • Sandboxing • Servers • Shielded twisted-pair (STP) • Software as a Service (SaaS) • Solid-state drive (SSD) • Switch • Unified threat management (UTM) • Unshielded twisted-pair (UTP) • Virtualization • Web security gateway • Wireless access point • Workstation

  7. Devices • Devices are needed to connect clients and servers and to regulate the traffic between them. • Devices expand the network beyond simple client computers and servers. • Devices come in many forms and with many functions. • Each device has a specific network function and plays a role in maintaining network infrastructure security.

  8. Workstations • The workstation is the machine that sits on the desktop. • It is used every day for sending and reading e-mail, creating spreadsheets, writing reports in a word processing program, and playing games. • A workstation connected to a network is an important part of the network security solution. • Many threats to information security can start at a workstation, but much can be done in a few simple steps to provide protection from many of these threats.

  9. Servers • Servers are the computers in a network that host applications and data for everyone to share. • Servers come in many sizes. • Server operating systems range from Windows Server, to UNIX, to Multiple Virtual Storage (MVS) and other mainframe operating systems • They tend to be more robust than workstation OSs. • They are designed to service multiple users over a network at the same time. • Servers can host a variety of applications.

  10. Mobile Devices • Mobile devices such as laptops, tablets, and mobile phones are the latest devices to join the corporate network. • Mobile devices can create a major security gap, as a user may access separate e-mail accounts, one personal, without antivirus protection, and the other corporate.

  11. Device Security, Common Concerns • As more and more interactive devices are being designed, a new threat source has appeared. • Default accounts and passwords are well known in the hacker community. • First steps you must take to secure such devices is to change the default credentials.

  12. Network-Attached Storage • Because of the speed of today’s Ethernet networks, it is possible to manage data storage across the network. • This has led to a type of storage known as Network- Attached Storage (NAS). • The combination of inexpensive hard drives, fast networks, and simple application-based servers has made NAS devices in the terabyte range affordable for even home users. • As a network device, it is susceptible to attacks.

  13. Removable Storage • Removable devices can move data outside of the corporate-controlled environment. • Removable devices can bring unprotected or corrupted data into the corporate environment. • All removable devices should be scanned by antivirus software upon connection to the corporate environment. • Corporate policies should address the copying of data to removable devices.

  14. Virtualization (1 of 2) • Virtualization technology is used to allow a computer to have more than one OS present and, in many cases, operating at the same time. • Virtualization is an abstraction of the OS layer. • It creates the ability to host multiple OSs on a single piece of hardware. • A major advantage of virtualization is the separation of the software and the hardware. • It creates a barrier that can improve many system functions, including security.

  15. Virtualization (2 of 2) • The underlying hardware is referred to as the host machine, and on it is a host OS. • A hypervisor is needed to manage virtual machines (VMs). • Virtual machines are typically referred to as the guest OSs. • Newer OSs are designed to natively incorporate virtualization hooks. • Common virtualization solutions include: • Microsoft Hyper-V, VMware, Oracle VM VirtualBox, Parallels, and Citrix Xen

  16. Hypervisor (1 of 4) • A hypervisor enables virtualization. • A low-level program that allows multiple operating systems to run concurrently on a single host computer. • The hypervisor acts as the traffic cop that controls I/O and memory management.

  17. Hypervisor (2 of 4) • Major advantages of virtualization: • The separation of the software and the hardware • Creates a barrier that can improve many system functions, including security. • Either the host OS has built-in hypervisor capability or an application is needed to provide the hypervisor function to manage the virtual machines (VMs).

  18. Hypervisor (3 of 4) • Type 1 • Type 1 hypervisors run directly on the system hardware. • Referred to as a native, bare-metal, or embedded hypervisors in typical vendor literature. • Are designed for speed and efficiency, as they do not have to operate through another OS layer. • These platforms come with management toolsets to facilitate VM management in the enterprise.

  19. Hypervisor (4 of 4) • Type 2 • Type 2 hypervisors run on top of a host operating system. • In the beginning, Type 2 hypervisors were the most popular. • Typical Type 2 hypervisors include Oracle’s VirtualBox and VMware’s VMware Workstation Player. • Are designed for limited numbers of VMs, typically in a desktop or small server environment.

  20. Application Cells/Containers • Application cells/containers holds the portions of an OS that it needs separate from the kernel. • Multiple containers can share an OS and have separate memory, CPU, and storage threads. • A container consists of an entire runtime environment • The application platform, including its dependencies, is containerized

  21. VM Sprawl Avoidance • Sprawl is the uncontrolled spreading of disorganization caused by a lack of an organizational structure when many similar elements require management. • VM sprawl is a symptom of a disorganized structure. • VM sprawl avoidance needs to be implemented via policy.

  22. VM Escape Protection • VM escape occurs when software (typically malware) or an attacker escapes from one VM to the underlying OS and then resurfaces in a different VM. • Large-scale VM environments have specific modules designed to detect escape and provide VM escape protection to other modules.

  23. Snapshots • A snapshot is a point-in-time saving of the state of a virtual machine. • Snapshots uses: • Roll a system back to a previous point in time • Undo operations • Provide a quick means of recovery from a complex, system-altering change that has gone awry • Snapshots act as a form of backup and are typically much faster than normal system backup and recovery operations.

  24. Patch Compatibility • Patches are still needed and should be applied, independent of the virtualization status.

  25. Host Availability/Elasticity • In a virtualization environment, protecting the host OS and hypervisor level is critical for system stability. • Best practice is to avoid the installation of any applications on the host-level machine. • Elasticity refers to the ability of a system to expand/contract as system requirements dictate.

  26. Security Control Testing • It is important to test the controls applied to a system to manage security operations to ensure that they are providing the desired results. • It is essential to specifically test all security controls inside the virtual environment to ensure their behavior is still effective.

  27. Sandboxing • Sandboxing refers to the quarantine or isolation of a system from its surroundings. • Virtualization can be used as a form of sandboxing with respect to an entire system.

  28. Networking • Networks are used to connect devices together. • Networks are composed of components that perform networking functions to move data between devices. • Networks begin with network interface cards, then continue in layers of switches and routers. • Specialized networking devices are used for specific purposes, such as security and traffic management.

  29. Network Interface Cards (1 of 2) • To connect a server or workstation to a network, a device known as a network interface card (NIC) is used. • A NIC is the physical connection between a computer and the network. • Each NIC port is serialized with a unique code, 48 bits long, referred to as a Media Access Control address (MAC address). • Unfortunately, these addresses can be changed, or “spoofed,” rather easily.

  30. Network Interface Cards (2 of 2) Figure 10.1 Linksys network interface card (NIC)

  31. Hubs • A hub is networking equipment that connects devices that are using the same protocol at the physical layer of the OSI model. • A hub allows multiple machines in an area to be connected together in a star configuration with the hub at the center. • All connections on a hub share a single collision domain, a small cluster in a network where collisions occur. • Increased network traffic can become limited by collisions; this problem has made hubs obsolete in newer networks. • Hubs also create a security weakness due to sniffing and eavesdropping issues.

  32. Bridges • A bridge operates at the data link layer, filtering traffic based on MAC addresses. • Bridges can reduce collisions by separating pieces of a network into two separate collision domains. • This only cuts the collision problem in half. • A better solution is to use switches for network connections.

  33. Switches (1 of 4) • A switch forms the basis for connections in most Ethernet-based LANs. • Switches have replaced hubs and bridges. • A switch has separate collision domains for each port. • When full duplex is employed, collisions are virtually eliminated from the two nodes, host and client. • A switch is usually a Layer 2 device, but Layer 3 switches incorporate routing functionality.

  34. Switches (2 of 4) • Advantages of switches • They improve network performance by filtering traffic. • They provide the option to disable a port so that it cannot be used without authorization. • They support port security allowing the administrator to control which systems can send data to each of the ports. • Switches use the MAC address of the systems to incorporate traffic filtering and port security features. • Port address security based on MAC addresses functionality is what allows an 802.1X device to act as an “edge device.”

  35. Switches (3 of 4) • Switch security concerns • They are intelligent network devices and are therefore subject to hijacking by hackers. • Switches are commonly administered using the Simple Network Management Protocol (SNMP) and Telnet protocol. • Both protocols have a serious weakness in that they send passwords across the network in cleartext. • Switches are shipped with default passwords. • Switches are subject to electronic attacks, such as ARP poisoning and MAC flooding.

  36. Switches (4 of 4) • Loop protection is a concern with switches. • Switches operate at Layer 2 so there is no countdown mechanism to kill packets that get caught in loops or on paths that will never resolve. • The Layer 2 space acts as a mesh, where potentially the addition of a new device can create loops in the existing device interconnections. • Spanning trees technology is employed to prevent loops. • The Spanning Tree Protocol (STP) allows for multiple, redundant paths, while breaking loops to ensure a proper broadcast pattern.

  37. Routers (1 of 2) • A router is a network traffic management device used to connect different network segments. • Operate at the network layer (Layer 3) of the OSI model • Form the backbone of the Internet • Use algorithms and tables to determine where to send the packet • Use access control lists (ACLs) as a method of deciding whether a packet is allowed to enter the network • Must limit router access and control of internal functions

  38. Routers (2 of 2) Figure 10.2 A small home office router for cable modem/DSL

  39. Firewalls (1 of 5) • A firewall is a network device—hardware, software, or a combination thereof. • Its purpose is to enforce a security policy across its connections by allowing or denying traffic to pass into or out of the network. • The heart of a firewall is the set of security policies that it enforces. • A key to security policies for firewalls is the principle of least access.

  40. Firewalls (2 of 5) Figure 10.3 How a firewall works

  41. Firewalls (3 of 5) Figure 10.4 Linksys RVS4000 SOHO firewall

  42. Firewalls (4 of 5) • The security topology determines what network devices are employed at what points in a network. • The perfect firewall policy is one that the end user never sees and one that never allows even a single unauthorized packet to enter the network. • To develop a complete and comprehensive security policy, it is first necessary to have a complete and comprehensive understanding of your network resources and their uses.

  43. Firewalls (5 of 5) Figure 10.5 Logical depiction of a firewall protecting an organization from the Internet

  44. How Do Firewalls Work? (1 of 2) • Firewalls enforce the established security policies through a variety of mechanisms, including: • Network Address Translation (NAT) • Basic packet filtering • Stateful packet filtering • Access control lists (ACLs) • Application layer proxies • ACLs are a cornerstone of security in firewalls. • Firewalls can also act as network traffic regulators.

  45. How Do Firewalls Work? (2 of 2) Figure 10.6 Firewall with SMTP application layer proxy

  46. Next-Generation Firewalls • Next-generation firewalls are characterized by these features: • Deep packet inspection • Move beyond port/protocol inspection and blocking • Add application-level inspection • Add intrusion prevention • Bring intelligence from outside the firewall • Traffic can be managed based on content, not merely site or URL.

  47. Web Application Firewalls vs. Network Firewalls • A web application firewall is the term given to any software package, appliance, or filter that applies a rule set to HTTP/HTTPS traffic. • They shape web traffic and filter out SQL injection attacks, malware, cross-site scripting (XSS), and so on. • A network firewall is a hardware or software package that controls the flow of packets into and out of a network.

  48. Concentrators • Network devices called concentrators act as traffic management devices, managing flows from multiple points into single streams. • Concentrators typically act as endpoints for a particular protocol, such as SSL/TLS or VPN. • The use of specialized hardware can enable hardware-based encryption and provide a higher level of specific service than a general-purpose server. • This provides both architectural and functional efficiencies.

  49. Wireless Devices (1 of 2) • Wireless devices bring additional security concerns. • Radio waves or infrared carry data, which allows anyone within range access to the data. • The point of entry from a wireless device to a wired network is performed at a device called a wireless access point. • They can support multiple concurrent devices accessing network resources through the network node they create. • Several mechanisms can be used to add wireless functionality to a machine.

  50. Wireless Devices (2 of 2) A typical PCMCIA wireless network card A typical wireless access point

More Related