1 / 41

=

Learn how to apply the Power Rule in calculus with step-by-step examples and explanations. Master differentiation with this comprehensive guide.

ckelly
Download Presentation

=

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. = • (7x+2)13/13 • (7x+2)13/13 + C • (7x+2)11/13 + C • (7x+2)11/11 + C

  2. = • (7x+2)13/13 • (7x+2)13/13 + C • (7x+2)11/13 + C • (7x+2)11/11 + C

  3. .

  4. . u = 2x-3 du/dx = 2 du = 2 dx du/2 = dx

  5. Power Rule • If u is any differentiable function and n is not -1, then

  6. Let u = the bad stuff • Using the power rule • u = 1 + z2. • du/dz = 2z or du = 2z dz • z dz = du/2

  7. Let u = the bad stuff • u = 1 + z2. • du/dz = 2z • z dz = du/2

  8. u = du/df = 7 or du = 7 df Anti Chain Rule

  9. . u = du/dx = du = 3x2dx x2dx = du/3

  10. sin(3x) dx = • u = 3x • du = 3 dx • 1/3 du = dx

  11. sin 3x dx u = • sin 3x • x • 3x • cos 3x

  12. sin 3x dx u = • sin 3x • x • 3x • cos 3x

  13. sin(3x) dx = • u = 3x • du = 3 dx • 1/3 du = dx

  14. u = 2x-3 (2x-3)3dx • du/dx = 2 • du = 2 dx • du/2 = dx u3 /2 du =

  15. (2x-3)3dx u = • 2x - 3 • 2x • 3x • (2x – 3)3

  16. (2x-3)3dx u = • 2x - 3 • 2x • 3x • (2x – 3)3

  17. (2x-3)3dx u = 2x-3 du = • 2 dx • 0 dx • 3 dx • -3 dx

  18. (2x-3)3dx u = 2x-3 du = • 2 dx • 0 dx • 3 dx • -3 dx

  19. (u)3 ½ du = (2x-3)3dx • Replace 2x-3 with u, dx by 2 du • Replace 2x-3 with u, dx by ½ du • Replace (2x-3)3 with u, dx by ½ du

  20. (u)3 ½ du = (2x-3)3dx • Replace 2x-3 with u, dx by 2 du • Replace 2x-3 with u, dx by ½ du • Replace (2x-3)3 with u, dx by ½ du

  21. u = 2x-3 (2x-3)3dx = • (2x-3)4/4 + c • u4/8 + c • (2x-3)4/8 + c • 2(2x-3)4 + c

  22. u = 2x-3 (2x-3)3dx = • (2x-3)4/4 + c • u4/8 + c • (2x-3)4/8 + c • 2(2x-3)4 + c

  23. =

  24. = • 0.333333 • 0.1

  25. x sec2(3x2)dx u = • sec 3x2 • 3x • 3x2 • x

  26. x sec2(3x2)dx u = • sec 3x2 • 3x • 3x2 • x

  27. u = 3x2 x sec2(3x2)dx • du/dx = 6x • du = 6x dx • du/6 = x dx 1/6 sec2(u) du =

  28. x sec2(3x2)dx • tan 3x2 + c • tan 3x2/ 3 + c • sec 3x2/ 3 + c • tan 3x2/ 6 + c

  29. x sec2(3x2)dx • tan 3x2 + c • tan 3x2/ 3 + c • sec 3x2/ 3 + c • tan 3x2/ 6 + c

  30. Copy g(x) If derivative is here Add one to exponent Divide by new exponent Anti Power Rule

  31. = • Check help on next slide

  32. =

  33. = • 0.2 • 0.1

  34. =

  35. = • -10.0 • 0.1

  36. =

  37. = • 0.5 • 0.1

  38. What is the derivative of tan(x)?

  39. What is the derivative of tan(x)?

  40. Copy sin(x) Derivative is here Add one to exponent Divide by new exponent Anti Power Rule

More Related