1 / 33

Photon radiation in sQGP

Photon radiation in sQGP. Máté Csanád , Imre Májer Eötvös University Budapest WPCF 2011, Tokyo. The Little Bang. thermalization. Milestones @ RHIC. Jet suppression in Au+Au : new phenomenon Phys. Rev. Lett . 88, 022301 (2002) No jet suppression in d+Au : new form of matter

claude
Download Presentation

Photon radiation in sQGP

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PhotonradiationinsQGP MátéCsanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo

  2. TheLittle Bang thermalization VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  3. Milestones @ RHIC • Jet suppression in Au+Au: new phenomenon • Phys. Rev. Lett. 88, 022301 (2002) • No jet suppression in d+Au: new form of matter • Phys. Rev. Lett. 91, 072303 (2003) • Summary of the results: matter is a liquid • Nucl. Phys. A 757, 184-283 (2005) • Elliptic flow scaling: quark degrees of freedom • Phys. Rev. Lett. 98, 162301 (2007) • Heavy quark flow: nearlyperfect fluid • Phys. Rev. Lett. 98, 172301 (2007) • Direct photon spectrum: high initial temperature • Phys. Rev. Lett. 104, 132301 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  4. Direct photon spectra measured @ PHENIX • Background from hgg • Idea: thermal & virtual photons and dielectrons X → e+e− X → g and X → g* → e+e− • e+e- and g related • Direct and inclusive also • Direct photons calculable • Thermal below 3 GeV! • Initial temperature? EoS? • Hydrodynamics! from same process Phys. Rev. Lett. 104, 132301 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  5. Method of exacthydrodynamics VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  6. The solution we investigate By Csörgő, Csernai, Hama, Kodama, 2004 Only available 3D relativistic and realistic solution Hubble-flow: um=xm/t In the Universe: v=Hr, Hubble constant ~ (time)-1 Ellipsoidal symmetry: Thermodynamic quantities const. on the s=const. ellipsoid X, Y, Z describe the expanding ellipsoid here Gaussian temperature profile, expanding and shrinking over time: TIME VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  7. Momentum distribution & correlation radii • 0-30% centrality, Au+Au, PHENIXdata [PRC69 & PRL91] • T0 199 ± 3 MeV central freeze-out temp. • e 0.80 ± 0.02 momentum space ecc. • ut2/b -0.84± 0.1 (b<0) transv. flow/temp. grad • t0 7.7 ± 0.1 freeze-out proper time Eur. Phys. J. A 44, 473–478 (2010) Eur. Phys. J. A 44, 473–478 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  8. Elliptic flow • 0-92% centrality, Au+Au, PHENIXdata [PRL93] • T0 204 ± 7 MeV f.o. temperature • e 0.34 ± 0.01 eccentricity • ut2/b -0.34 ± 0.07 (b<0) transv. flow/temp. grad. Eur. Phys. J. A 44, 473–478 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  9. Temperature versus time • Fromhadronicobservables: • Hadronicobservablescannotdecide! • EoS & Tinifrompenetratingprobes! Eur. Phys. J. A 44, 473 (2010) Fixed fromhadronicobservables VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  10. Direct photon spectrum • Fits to 0-92% centrality PHENIX data [PRL104] • Parameters from hadronic fit • Important new parameter: k=7.7±0.8  cs=0.36±0.02 • Average EoS, compare Lacey et al., nucl-ex/0610029 arXiv: 1101.1279, 1101.1280(2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  11. Temperature versus time • Fromhadronicobservables: • EoSfromphotonspectra: k=7.7±0.8 or cs=0.36 ± 0.02 • Initialtemperature (att=1 fm/c) Ti > 519 ± 12 MeV Determinedfromphotonspectra Eur. Phys. J. A 44, 473 (2010) Fixed fromhadronicobservables VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  12. Photon elliptic flow • Elliptic flow from PHENIX data [arXiv:1105.4126] • Early times more important • Many models fail to describe • Non-hydro effects kick in >2 GeV • Sign change possible here! VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  13. Photon HBT • Bose-Einstein correlations • Rout/Rside = 1 for hadrons • Rout» Rside here! • Large t! Evolutiontime VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  14. Summary • Revival of interest in perfect hydro • Our model: 3+1d relativistic model w/o acceleration • Calculated hadronic source → N1, v2, HBT • Calculated photon source → N1, v2, HBT • Compared successfully to data, cs=0.36±0.02 Ti≈520 MeV • Compared to fresh photon v2 data • Prediction on Bose-Einstein correlations VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  15. Thank you for your attention

  16. Perfecthydropicture • No data point even near the kinematic viscosity of 4He (10/4p) • Close to AdS/CFT minimum, (1/4p) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  17. How to measure direct photons? • PHENIX measurement done: PRL 104, 132301 (2010) • Problem: huge background from h → gg • Idea: thermal + virtual photon production parralel • X →e+e−, X → g and X → g* → e+e− fromthesameprocess • Dielectron and realphoton production related as: • S process dependent, dng*/dng, for p0 and he.g.: • Forpt»mee»me: L, S → 1 VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  18. Dielectron spectrum measurement • Measuredelectronpairswithpt of 1-5 GeV • Easyviaelectron ID capabilities • Comparetodielectronsfromhadroniccocktail • Excessseenabovepionmassduetovirtualg Phys. Rev. Lett. 104, 132301 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  19. Direct photons versus decay photons • Excess:virtualdirect photons (decayinginto e+e−pairs) • Inclusive e+e−: hadronic + dir. virtualphotoncomponents • Hadronicelectronpairs (fc), calculatedfromcocktail: p, h, w, h’, f • Electronpairsfromdirectvirtualphotons (fdir)calculatedfromfcviaprevious formula • Determine ratio r by fit for separate pt bins • Use r to scale inclusive photon spectra VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  20. Famous solutions • Landau’s solution (1D, developed for p+p): • Accelerating, implicit, complicated, 1D • L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51 • I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529 • L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309 • Hwa-Bjorken solution: • Non-accelerating, explicit, simple, 1D, boost-invariant • R.C. Hwa, Phys. Rev. D10, 2260 (1974) • J.D. Bjorken, Phys. Rev. D27, 40(1983) • Others • Chiu, Sudarshan and Wang • Baym, Friman, Blaizot, Soyeur and Czyz • Srivastava, Alam, Chakrabarty, Raha and Sinha VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  21. Some known relativistic solutions VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  22. The solutionweinvestigate Density, temperature, pressure n(s) arbitrary, butrealisticto choose Gaussian b<0 is realistic Ellipsoidalsymmetry (thermodynamicquantitiesconst. onthe s=const. ellipsoid) Directional Hubble-flow v=Hror H=v/r, theHubble-constants: (T. Csörgő, L. P. Csernai, Y. Hama és T. Kodama, Heavy Ion Phys. A 21, 73 (2004)) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  23. Temperature versus time • Fromhadronicobservables: • EoSfromphotonspectra: k=7.7±0.8 • Initialtemperature (att=1 fm/c) Ti > 519 ± 12 MeV Eur. Phys. J. A 44, 473 (2010) VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  24. Insensitivitytotheinitialtime • Initial time period: small contribution VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  25. EoS dependence • Sensitivetokwiththeselevel of errors VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  26. Photon elliptic flow analysis Eccentricity dependence EoS dependence Initial time dependence VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  27. Source functions • Source function: probability particle creation • For hadrons: Maxwell-Boltzmann type • H(t)dt freeze-out distribution (e.g. Dirac-d) • pmd3Sm(x) Cooper-Fry prefactor (flux term) • Photons are continously created, but not thermalized • Thermal emission determins source functions VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  28. Hadronic results • Single particle transverse momentum spectrum • Elliptic flow (asymmetryinthetransverseplane) with , I: Bessel func. • Width of two-particlecorrelation functions: VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  29. Photon spectra and photon v2 • Integration can be done analytically • A and B are: VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  30. Whereweare • Revival of interest, new solutions • Sinyukov, Karpenko, nucl-th/0505041 • Pratt, nucl-th/0612010 • Bialas et al.: Phys.Rev.C76:054901,2007 • Borsch, Zhdanov: SIGMA 3:116,2007 • Nagy et al.: J.Phys.G35:104128,2008 and arXiv/0909.4285 • Liao et al.: arXiv/09092284 and Phys.Rev.C80:034904,2009 • Mizoguchi et al.: Eur.Phys.J.A40:99-108,2009 • Beuf et al.:Phys.Rev.C78:064909,2008 (dS/dy as well!) • Need for solutions that are: • accelerating + relativistic+ 3 dimensional • explicit + simple + compatible with the data • Need to calculate observables! VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  31. Correlationfunctions VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  32. Azimuthaldependence of HBT radii VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

  33. Azimuthalasymmetry VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

More Related