1 / 22

LEIR Schottky system and Experimental Results J.TAN AB/BDI

LEIR Schottky system and Experimental Results J.TAN AB/BDI. Outline. LHC ion injector chain LEIR Machine Schottky Pick-Ups Commissioning with : Oxygen ions O 4+ Lead ions Pb 54+ Summary. LHC Filling Scheme : Pb 54+ ions. 200 e m A. Pb 27+. 27+. 82+. 54+. 54+. Pb. Pb.

cole
Download Presentation

LEIR Schottky system and Experimental Results J.TAN AB/BDI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LEIR Schottky system and Experimental ResultsJ.TANAB/BDI Jocelyn TAN CERN AB / BI

  2. Outline • LHC ion injector chain • LEIR • Machine • Schottky Pick-Ups • Commissioning with : • Oxygen ions O4+ • Lead ions Pb54+ • Summary Jocelyn TAN CERN AB / BI

  3. LHC Filling Scheme : Pb54+ ions 200 emA Pb 27+ 27+ 82+ 54+ 54+ Pb Pb Pb Pb ECR 4.2 MeV/u, b=0.095 rep. rate 1 to 5Hz Energy ramping cavity Dp/p~0.4% LINAC3 RFQ LEIR • stacking of 9x108 ions at 4.2 MeV/u • accel. to 72 MeV/u • 2 bunches of 4.5x108 ions each • cycle length 3.6s 592 bunches ~ 10mn filling time per ring. 7.107 /bunch 2.76TeV/u, L = 1027 cm-2 s-1 LHC *accel. to 5.9 GeV/u *Double bunch splitting SPS *4 pairs of bunchlets per 3.6s PS ~13 PS inj./ SPS cycle 1 ej./1. mn at 177GeV/u Jocelyn TAN CERN AB / BI

  4. LEIR Machine (1) Nominal Lead Ions Cycle : 3.6s Extraction 1.2 B[ T ] 72 MeV/u 1.0 multi-turn injection 200ms 0.8 Main dipole field [T] 0.6 Electron cooling + Stacking Acceleration 0.4 0.2 4.2 MeV/u t[ms] 0.0 0 500 1000 1500 2000 2500 3000 3500 ejection injection • Injection repetition rate : 1 to 5 Hz • Beam unbunched for 1600ms • Schottky signals are essential for diagnostics and controlling phase-space cooling efficiency Jocelyn TAN CERN AB / BI

  5. LEIR Machine (2) extraction point injection line Electron cooler Jocelyn TAN CERN AB / BI

  6. Stripline electrode t2+t1 t2 t1 A B • Striplines electrodes • Z0 = 50 • Matched lines L picking up the signal upstream the line A B picking up the signal donwstream the line Jocelyn TAN CERN AB / BI

  7. LEIR : Travelling-Wave mode • Travelling-Wave Striplines for lowenergyparticles P ~ (Nstripxi0)2 delay delay 3i0 2i0 i0 Jocelyn TAN CERN AB / BI

  8. LEIR : Travelling-Wave mode delay delay • Travelling-Wave Striplines for lowenergy particles Beam delay delay Superposition of currents Good S/N ratio Hybrid S port D port Total power ~ (Nstripi0)2 Jocelyn TAN CERN AB / BI

  9. LEIR : Parallel combination • Monitor backward signal : for high (any) energy particles Hybrid Hybrid Hybrid i0 i0 i0 delay1 delay2 Combiner Total power ~ Nstripxi02 Jocelyn TAN CERN AB / BI

  10. Schottky Pick-Ups Layout UCV22-TW EXTRACTION : Parallel mode INJECTION : Travelling Wave mode Vertical : 8 pairs of stripline-electrodes Horizontal and Longitudinal : 24 pairs of stripline-electrodes Vertical : 6 pairs of stripline-electrodes Horizontal and Longitudinal : 24 pairs of stripline-electrodes Jocelyn TAN CERN AB / BI

  11. In the control room... 75 dB Pick-Up -45 -55 -65 -75 -85 -95 -105 Dp/p = 4.10-3 N=2.25x108 Lead ions -145 dBm/Hz -70 dBm/Hz noise level of the spectrum analyser = -140 dBm/Hz Inj. trigger 100th harmonic at 36 MHz reduced thermal noise = -177 dBm/Hz Resolution BW = 1.5 kHz Peak signal = - 38 dBm ( i.e. 2.7 mV peak) Aug. 2007 : new Spectrum analysers + remote desktop Jocelyn TAN CERN AB / BI

  12. Commissioning with O4+ ions : Oct.-Nov. 2005 • Expected longer vacuum life-time than with Lead ions (lower cross section for charge exchange processes with the residual gas) • O4+ and Pb54+ have very close Z/A Nearly same beam rigidity for both ion species • Results and observations • Unexpected shorter lifetime : vac. leaks + desorption • Fast losses coupled w/ transverse “activities” observed : coupling impedances ions trapped in potentials created by e- beam • Interpretation of beam cooling not straightforward • frev = 363.3 kHz • Injection momentum spread ~ 4x10-3 • Qh = 1.795 Qv = 2.604 Longitudinal plane Horizontal spectrum Vertical spectrum (100+qh ).f0 (50-qv ).f0 (50+qv ).f0 (101-qh ).f0 50.f0 99.f0100.f0101.f0 Jocelyn TAN CERN AB / BI

  13. Commissioning with Pb54+ ions : 2006-2007 : Nominal Scheme Spectrogram of the momentum cooling during stacking on the injection front porch. The vertical and horizontal axis denote time (1.6 s total from top to bottom); and momentum spread (1% full scale) respectively. There are 5 injections-cooling stacking sequences every 300ms 7.8x108 cold ions before bunching ~30% off wrt Nominal value Jocelyn TAN CERN AB / BI

  14. MOMENTUM full span is equivalent to Dp/p = 1% Jocelyn TAN CERN AB / BI

  15. VERTICAL full span is equivalent to Dp/p = 1% Jocelyn TAN CERN AB / BI

  16. Summary • Schottky system in LEIR is fully operational • GUI displaying e.g. tune vs time is expected for the next run • The pick-ups for high momentum have been commissioned, but never used Jocelyn TAN CERN AB / BI

  17. PERFORMANCES :NOMINAL Sigma[mm] 30 H 20 10 0 V Courtesy M. CHANEL, G. TRANQUILLE Jocelyn TAN CERN AB / BI Evolution of beam dimensions during injection and cooling process

  18. Putting numbers : injection • Number of particles 2.25x108 ions • In all formula, replace “e” by “Ze” • Qh / Qv 1.82 / 2.72 • Betatron function bh/bv = 6.5 / 5.5 • Striplines geometry 16cm/13cm • Transfer function Jocelyn TAN CERN AB / BI

  19. Injection: Longitudinal spectrum After e-cooling Injection 6 Jocelyn TAN CERN AB / BI

  20. Injection : Transverse spectra Horizontal e*h= 0.3 p.mm e*h= 1.7 p.mm Vertical e*v= 0.25 p.mm e*v= 1 p.mm Jocelyn TAN CERN AB / BI

  21. Equivalent input noise (1) • Noise Figure of an amplifier : NF [dB] • Passive components • Transistors : Shot noise • FETs : voltage and current noise • Equivalent noise source real G + RinTeq real ideal xG Ieq(f) Rs, T ideal Rs real real world equivalent circuit • Johnson noise of a resistor: R real R, T iR(f) ideal • Equivalent input noise Jocelyn TAN CERN AB / BI

  22. Equivalent input noise (2) G + RinTeq LNA NF1 50 Load Eq. Noise Ieq(f) [pA/Hz1/2] Low Noise Amplifier Zin = 50 NF1 = 1.2 dB NF1 T = Room Temp. 293K 10.3 LNA NF Ieq (f) Teq = 93K 5.8 With active loads the input noise is decreased by ~-6dB LN2 5.3 Teq 10K 1.9 Jocelyn TAN CERN AB / BI

More Related