110 likes | 275 Views
An Improvement on Authenticated Key Agreement Scheme. Authors: Chin-Chen Chang and Shih-Yi Lin Source: 2007 International Conference on Intelligent Pervasive Computing, 11-13 Oct. 2007, pp. 3 - 6 Presenter: Jung-wen Lo ( 駱榮問 ). Outline. Introduction Notation Lee-Lee ’ s Scheme
E N D
An Improvement on Authenticated Key Agreement Scheme Authors: Chin-Chen Chang and Shih-Yi Lin Source: 2007 International Conference on Intelligent Pervasive Computing, 11-13 Oct. 2007, pp. 3 - 6 Presenter: Jung-wen Lo (駱榮問)
Outline • Introduction • Notation • Lee-Lee’s Scheme • Weakness of Lee-Lee’s scheme • Proposed scheme • Conclusions & Comment • Improved Lee-Lee’s Scheme1 • Improved Lee-Lee’s Scheme2 • Improved Chang-Lin’s scheme
Introduction • Key agreement types • Based on public key techniques • Heavy computational overhead • Based on passwords • Popular approach • Simplicity & convenience • Diffie-Hellman key agreement • Vulnerable to man-in-the-middle attack • Narn-Yih Lee and Ming-Feng Lee, “Further improvement on the modified authenticated key agreement scheme,” Applied Mathematics and Computation, Vol. 157, pp. 729–733, 2004. • Keon-Jik Lee and Byeong-Jik Lee, “Cryptanalysis of the modified authenticated key agreement scheme,” Applied Mathematics and Computation, Vol. 170, pp. 280–284, 2005.
Lee-Lee’s Scheme Alice(Q) Bob(Q) Key EstablishmentPhase Random aXa=gaQ mod p Xa Random bYb=gbQ mod p Yb Key ValidationPhase Ka=1 => abandon h(IDa,Xa,Ka) h(IDa,Xa,Kb) ?= h(IDa,Xa,Ka) h(IDb,Yb,Kb) h(IDb,Yb,Ka) ?= h(IDb,Yb,Kb)
Weakness of Lee-Lee’s scheme Alice(Q) Eve Bob(Q) Key EstablishmentPhase Random aXa=gaQ mod p Xa X’a=g mod P Random bYb=gbQ mod p Y’b=g mod p Yb Key ValidationPhase K’a=1 => abandon h(IDa,Xa,K’a) Eve: Chose one pw’ Q’
Proposed scheme Alice (A) Bob (B) Random aM1=(ga mod p)h(IDa,Q,ta) M1,ta Check ta ga =M1h(IDa,Q,ta) Random b,rKb=(ga)b mod p M2=(gb mod p)h(IDb,Q,tb)M3=E[M2,r]Kb M2,M3,tb Check tb gb =M2h(IDb,Q,tb) Ka=(gb)a mod p (M2,r)=D[M3]kaM4=E[r]ka M4 r=D[M4]kb
Conclusions & Comment • Conclusions • Authenticated key agreement • Resistance to replay attack and off-line password attack • Perfect forward secrecy • Comments • Improved Lee-Lee’s scheme • Improved Chang-Lin’s scheme • Reduce the computation load
Improved Lee-Lee’s Scheme1 Alice(Q) Bob(Q) Key EstablishmentPhase Random aXa=gaQ mod p Xa Random bYb=gbQ mod p Yb Key ValidationPhase Ka=1 or ga/Q => abandon h(IDa,Xa,Ka) h(IDa,Xa,Kb) ?= h(IDa,Xa,Ka) h(IDb,Yb,Kb) h(IDb,Yb,Ka) ?= h(IDb,Yb,Kb)
Improved Lee-Lee’s Scheme2 Alice(Q) Bob(Q) Key EstablishmentPhase Random aXa=gamod p Xah(Q) Random bYb=gb mod p Ybh(Q) Ka=(Yb)a mod p =gab mod p Kb=(Xa)b mod p =gab mod p Key ValidationPhase Ka=1 => abandon h(IDa||Q||Ka) h(IDa||Q||Kb) ?= h(Ida||Q||Ka) h(IDb||Q||Kb) h(IDb||Q||Ka) ?= h(IDb||Q||Kb)
Improved Chang-Lin’s scheme Alice (A) Bob (B) Random aM1=(ga mod p)h(IDa,Q,ta) M1,ta Check ta ga =M1h(IDa,Q,ta) Random b,rKb=(ga)b mod p M2=(gb mod p)h(IDb,Q,tb)M3=rKb M2,M3,tb Check tb gb =M2h(IDb,Q,tb) Ka=(gb)a mod p r=M3kaM4=h(Q,r,ka ) M4 M4?=h(Q,r,kb) Chang-Lin: E[.]+D[.] in A,BOurs: +h(.) in A,B