1 / 32

Color Superconductivity in dense quark matter

Color Superconductivity in dense quark matter. „The Condensed Matter Physics of QCD“. Markus Fasel. Outline. Introduction Superconductivity: The BCS theory Color superconductivity 2SC Phase CFL Phase Color superconductivity in compact stars Summary. QCD. QCD-Lagrangian:

Download Presentation

Color Superconductivity in dense quark matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ColorSuperconductivity in densequarkmatter „The Condensed Matter Physics of QCD“ Markus Fasel 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 1

  2. Outline • Introduction • Superconductivity: The BCS theory • Color superconductivity • 2SC Phase • CFL Phase • Color superconductivity in compact stars • Summary 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 2

  3. QCD • QCD-Lagrangian: • : Gauge Field • : Field strength • : Color symmetry transformation • g : Coupling constant • Asymptotic freedom • Dependence of the coupling constant on the momentum transfer • Small scales: quarks get asymptotically free hep-ph/0211012 v1 • QCD Symmetry: • SU(3)c X SU(3)L X SU(3)R X U(1)B • SU(3)C: local • SU(3)L: global • SU(3)R: global 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 3

  4. Phase Diagram • Several phases for the QCD • Hadronic Phase • Quark-Gluon Plasma • Color-Superconductivity • Restoration of chiral symmetry in the Quark-Gluon Plasma • Confinement in the Hadronic Phase hep-ph/0812.283 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 4

  5. Cooper Pairs • Interaction between Electrons repulsive • Electron moving through a lattice causes vibration • Second Electron in the road of the first one sees attractive interaction caused by the lattice vibration • Phonon exchange • Repulsive Interaction screened by attractive Interaction • Definition Cooper pairs: • Opposite sign momentum • Opposite spin charge 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 5

  6. Effective Electron-Electron Interaction • Hamilton Operator for the Electron-Phonon-Interaction • T(q): Matrix Element of the Electron-Phonon-Interaction • b+,b : Creation and annihilation operators for the phonons • a+, a: Creation and annihilation operators for the electrons • Model Hamilton Operator • Transformation leads to a Hamilton operator for the effective electron-electron interaction • Interaction • Repulsive: • Attractive: 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 6

  7. BCS Ground State • Variational approach for the calculation of the ground state • BCS Ground State Ansatz • Model Hamilton Operator with • Calculation of the Ground state energy by variational approximation • uk and vk variational parameter See Talk from S. Huber 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 7

  8. Energy gap • Ground state energy Minimization • Gap parameter • Gap equation • Ground state Energy 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 8

  9. Color-Superconductivity • Screening of the repulsive Coulomb interaction • One-Gluon Exchange • Color antitriplet • Additional degrees of Freedom • Color Charge • Flavor • Variety of superconducting phases • 2SC Phase • CFL Phase • … nucl-th/0410092v1 Cooper Pairs: Diquark Condensate 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 9

  10. Diquark Condensate: Diquark Condensate • Requirement • Pauli-Principle: Operator totally antisymmetric • Dirac Space: • Charge-Conjugate-Operator • Flavor Space: • Nf = 2: Pauli-Matrices • Anti-symmetric: A = 2 • Nf= 3: Gell-Mann-Matrices • Anti-symmetric: A∈{2,5,7} • Color Space: • Gell-Mann Matrices Gell-Mann-Matrices 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 10

  11. 2SC-Phase • 2 Flavors  Symmetry reduces to SU(2) • Pauli matrices A • Anti-symmetric: A = 2 • 3 Colors  SU(3) • Gell-Mann matrices B • Anti-symmetric: B{2,5,7} • Diquark-Condensate i,j: Flavor space a,b: Color space ->Pairing of • Red and Green quarks to Anti-Blue • Up and Down • Spin-Up and Spin-Down u d u d 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 11

  12. Weak Coupling • Assuming small coupling • Nambu-Gorkov spinors with • Inverse free Fermion propagator with • Dyson-Schwinger equations • Fermion Part: • Gluon Part nucl-th/0410092v1 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 12

  13. Gap Equation • Ansatz for the Quark Propagator with off-diagonal elements due to Cooper-pairing with off-diagonal terms and • Ansatz for self energy • Solution of the Dyson Schwinger equation leads to the gap equation • Solution • Gaps in quasiparticle excitation spectrum • Dispersion Relation nucl-th/0410092v1 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 13

  14. NJL-Model • Mean Field Model • Assumption: • Gluon exchange described by four-quark interaction • Lagrangian • Free Lagragian • Quark-Antiquark interaction • Coupling GS • Quark-Quark Interaction • Coupling GD • Gap Equation: • Solution: 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 14

  15. Properties of the 2SC Phase • Blue particles • Gapless quasiparticles in the low energy spectrum • Dominant contribution to • Specific Heat • Electrical Conductivity • Heat Conductivity • Large Neutrino emissivity • Quasiparticle pairs • Contribution to the transport of thermodynamic quantities suppressed by exp(-Δ/T) at T<<Δ • Pressure Pauli Pressure Diquark pairing 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 15

  16. CFL Phase • Diquark Condensate • Three Flavours: • SU(3)  Gell-Mann matrices • A{2,5,7} • Three Colors: • SU(3)  Gell-Mann matrices • B{2,5,7} • Non-vanishing condensates: • s22,s55,s77 • Only special combinations of flavors and color pair u d s22 d s s55 s u s77 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 16

  17. Energy gap • NJL-Model describes interaction • General Ansatz: • Assumptions on the strange mass: • ms = 0: • ms= ∞:  2SC phase • Gap Parameter for the CFL phase • Results for ΔCFL: ~10-100MeV 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 17

  18. Properties of the CFL Phase • No gapless quasiparticles in low energy spectrum • Contribution to transport of thermodynamic quantities suppressed by exp(-Δ/T) at T<<Δfor all quasiparticles • Small neutrino emissivity • No electromagnetic superconductivity • Pressure 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 18

  19. Symmetries Goldstone Theorem: For each generator of a broken global symmetry exists a massless Spin-0 (pseudoscalar) Boson Color-Meissner-Effect: Gauge bosons become massive due to coupling to the Higgs field when the gauge symmetry is broken (Higgs-Anderson mechanism) 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 19

  20. 2SC-Phase Color symmetry: reduces to SU(2) 5 of 8 gluons become massive Chiral symmetry: restored Unbroken symmetry: Rotated Baryon Number Rotated Charge  -conductor CFL-Phase Color and Chiral symmetry SU(3)C X SU(3)L X SU(3)R X U(1)B reduces to SU(3)C+R+L X Z2  “Color-Flavor-Locking” 8 massive gluons Flavor symmetry: broken 8 Goldstone Bosons Baryon number symmetry breaking Additional Goldstone Boson Superfluid with respect to the Baryon number Rotated Charge  -insulator Symmetries 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 20

  21. Color Superconductivity in Compact Stars • Requirements: Charge neutrality Vanishing electric charge density β-equilibrium: All weak processes should be in equilibrium Astro-ph/0407155v2 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 21

  22. Model for charge neutral color superconducting phases • Effective Model (NJL-Model) chosen • Chemical Potential: μ • Baryonchemicalpotential • Electricchemicalpotential • Color chemical potential • Grand Canonical Potential • Charge neutrality • Gap equations and and 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 22

  23. Dispersion Relation • Definitions • Mean Chemical potential • Deviation of the chem. Potential • Implications on the dispersion relation • 2 Gaps in quasiparticle spectrum • Case: normal 2SC phase and nucl-th/0410092v1 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 23

  24. Gapless 2SC phase • Three phases • Normal matter: • Gapless mode: • Gapped mode: where nucl-th/0410092v1 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 24

  25. Meissner effect in the g2SC phase • Meissner mass of the gluons • Generators of the unbroken SU(2) stay massless • Imaginary Meissner mass • Of the 8th gluon only in the gapless 2SC phase • Of the gluons 3-7 also in the gapped phase • Instable Ground State Gluon condensation? x ε{3,4,5,6} x=8 Gluons 0-2 Gluons 3-6 Gluon 7 g2SC hep-ph/04082268 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 25

  26. Gapless CFL Phase • Mass of the strange quark • Assumption 100MeV ≤ ms ≤ 500MeV • Charge neutrality condition • Automatically fulfilled by CFL phase (nu ≈ nd ≈ ns) • Color charge neutrality • Compensation term to avoid violation • Gapless modes for • Breakup of the degeneracy in Δ CFL gCFL Phys. Rev. Lett. 92, 222001 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 26

  27. Meissner masses in the gCFL-Phase • Partial breaking of the degeneracy of the Meissner masses at the onset of the gCFL Phase • Masses of gluons 1 and 2 become imaginary • Instability  Gluon Condensation? a=8 a=3 a=1,2 CFL gCFL a=5,6 CFL gCFL a=4,5 Phys. Lett. B 605, 362-368 Phys. Lett. B 605, 362-368 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 27

  28. Phase Diagram GD≈3/4GS hep-ph/0503184v2 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 28

  29. Phase Diagram GD≈GS hep-ph/0503184v2 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 29

  30. Quark masses (T=0) GD≈3/4 GS hep-ph/0503184v2 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 30

  31. Conclusions • Color superconductivity possible due to attractive 1-gluon exchange • Cooper pairing described by the diquark condensate • Energy gap in the quasi-particle spectrum • Interaction model by effective Mean-Field model • Compact stars • Neutrality conditions • Charge neutrality • Color charge neutrality • β-Equilibrium • Phases with gapless modes in the quasi-particle energy spectrum • Imaginary Meissner masses • Chromomagnetic instable 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 31

  32. References • Two Lectures on color superconductivity: nucl-th/0410092v1 • Color superconductivity in dense quark matter : hep-ph/08122831v2 • Color superconductivity in dense quark matter: Czech. J. Phys. 55, 521 – 539 (2005) • Color-flavor locking and chiral symmetry breaking in high density QCD: Nucl. Phys. B 537, 443-458 (1999) • Charge neutrality effects on two-flavor color superconductivity: Phys. Rev. D, 065015 (2003) • Screening masses in neutral two-flavor color superconductor: hep-ph/04082268 • Gapless Color-Flavor-Locked Quark Matter: Phys. Rev. Lett. 92, 222001 (2004) • Meissner masses in the gCFL phase of QCD, Phys. Lett. B 605, 362-368 (2005) • The phase diagram of neutral quark matter: Self consistent treatment of quark masses: hep-ph/0503184v2 • Theory of Superconductivity: Phys. Rev. 108, 1175-1204 (1957) • Strange Quark Matter and Compact Stars: Astro-ph/0407155v2 3. Januar 2020 | Relativistic Heavy Ion Physics Seminar | 32

More Related