1.01k likes | 1.02k Views
This chapter introduces the technique of measurement-space-guided spatial clustering for image segmentation, focusing on histogram mode seeking and clustering processes. It explores the challenges and solutions in segmenting images based on measurement space. The method aims to define partitions in measurement space to identify meaningful clusters and regions, enhancing the segmentation quality for various applications. Examples and diagrams illustrate the effectiveness and limitations of this approach, emphasizing the importance of accurate spatial clustering in image segmentation tasks.
E N D
Computer and Robot Vision I Chapter 10 Image Segmentation Presented by: 傅楸善 & 王林農 0917533843 r94922081@ntu.edu.tw 指導教授: 傅楸善 博士 Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
10.1 Introduction • image segmentation: partition of image into set of non-overlapping regions • image segmentation: union of segmented regions is the entire image • segmentation purpose: to decompose image into meaningful parts to application • segmentation based on valleys in gray level histogram into regions DC & CV Lab. NTU CSIE
10.1 Introduction (cont’) DC & CV Lab. NTU CSIE
DC & CV Lab. NTU CSIE
10.1 Introduction (cont’) • rules for general segmentation procedures • region uniform, homogeneous w.r.t. characteristic e.g. gray level, texture • region interiors simple and without many small holes • adjacent regions with significantly different values on characteristic • boundaries simple not ragged spatially accurate DC & CV Lab. NTU CSIE
10.1 Introduction (cont’) • Clustering: process of partitioning set of pattern vectors into clusters • set of points in Euclidean measurement space separated into 3 clusters DC & CV Lab. NTU CSIE
10.1 Introduction (cont’) DC & CV Lab. NTU CSIE
10.1 Introduction (cont’) • no full theory of clustering • no full theory of image segmentation • image segmentation techniques: ad hoc, different in emphasis and compromise DC & CV Lab. NTU CSIE
Joke DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering • The technique of measurement-space-guided spatial clustering for image segmentation uses the measurement-space-clustering process to define a partition in measurement space. DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • histogram mode seeking: a measurement-space-clustering process • histogram mode seeking: homogeneous objects as clusters in histogram • histogram mode seeking: one pass, the least computation time DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • enlarged image of a polished mineral ore section DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • 3 nonoverlapping modes: black holes, pyrorhotite, pyrite DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • 2 valleys in histogram is a virtually perfect (meaningful) segmentation DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • example image not ideal for measurement-space-clustering image segmentation DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • histogram with three modes and two valleys DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Undesirable: many border regions show up as dark segments DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • segmentation into homogeneous regions: not necessarily good solution DC & CV Lab. NTU CSIE
joke DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • diagram of an F-15 bulkhead DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • image of a section of the F-15 bulkhead DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Histogram of the image DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Five clusters: bad spatial continuation, boundaries noisy and busy DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • three clusters: less boundary noise, but much less detail DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • recursive histogram-directed spatial clustering DC & CV Lab. NTU CSIE
DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • applied to the bulkhead image DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • performing morphological opening with 3 x 3 square structuring element DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • tiny regions removed, but several long, thin regions lost DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • a color image DC & CV Lab. NTU CSIE
10.2 Measurement-Space-Guided Spatial Clustering (cont’) • recursive histogram-directed spatial clustering using R,G,B bands and other DC & CV Lab. NTU CSIE
joke DC & CV Lab. NTU CSIE
10.2.1 Thresholding • Kohler denotes the set E(T) of edges detected by a threshold T to be the set of all pairs of neighboring pixels one of whose gray level intensities is less than or equal to T and one of whose gray level intensities is greater than T DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • 1. pixels and are neighbors • 2.min max DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • The total contrast C(T) of edges detected by threshold T is given by DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • The average contrast of all edges detected by threshold T: • The best threshold Tb is determined by the value that maximizes DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • approach for segmenting white blob against dark background • pixel with small gradient: not likely to be an edge DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • if not an edge, then either dark background pixel or bright blob pixel • histogram of small gradient pixels: bimodal DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • pixels with small gradients: valley between two modes: threshold point DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • FLIR (Forward Looking Infra-Red) image from NATO (North Atlantic Treaty Organization) database DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • thresholded at gray level intensity 159 and 190 DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • pixels having large gradient magnitude DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • 2D gray level intensity-gradient space DC & CV Lab. NTU CSIE
DC & CV Lab. NTU CSIE
10.2.1 Thresholding (cont’) • resulting segmentation: bright object with slightly darker appendage on top DC & CV Lab. NTU CSIE
joke DC & CV Lab. NTU CSIE
10.2.2 Multidimensional Measurement-Space Clustering • LANDSAT image: consists of seven separate images called bands • Constraints of reality • high correlation between band-to-band pixel values • large amount of spatial redundancy in image data DC & CV Lab. NTU CSIE
10.2.2 Multidimensional Measurement-Space Clustering • Spectral sensitivity of LANDSAT 7 Bands. • Band Number Wavelength Interval Spectral Response. • 1. 0.45-0.52 µm Blue-Green • 2. 0.52-0.60 µm Green • 3. 0.63-0.69 µm Red • 4. 0.76-0.90 µm Near IR • 5. 1.55-1.75 µm Mid-IR • 6. 10.40-12.50 µm Thermal IR • 7. 2.08-2.35 µm Mid-IR DC & CV Lab. NTU CSIE
10.2.2 Multidimensional Measurement-Space Clustering DC & CV Lab. NTU CSIE