1 / 21

M-RAM (Magnetoresistive – Random Access Memory)

Kraków, 7 XII 2004r. M-RAM (Magnetoresistive – Random Access Memory). Information flux. Information transmission. Information Processing. Information storage. Information. Input. Outside word. Output. Magnetic (HDD) Optical (CD, DVD). DRAM, MRAM.

daisy
Download Presentation

M-RAM (Magnetoresistive – Random Access Memory)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kraków, 7 XII 2004r M-RAM(Magnetoresistive – Random Access Memory)

  2. Information flux. Information transmission Information Processing Information storage Information Input Outside word Output Magnetic (HDD) Optical (CD, DVD) DRAM, MRAM M-RAM M. Bernacki, S. Wąsek

  3. Memory categories. WHY DO WEE NEED M-RAM MEMORY ???? M-RAM M. Bernacki, S. Wąsek

  4. Basic attractions of M-RAM. • Nonvolatility; • Speed; • Low-power consumption; • Scalability. M-RAM M. Bernacki, S. Wąsek

  5. Basic attractions of M-RAM. Transfer data to microprocessor without creating a bottleneck! M-RAM M. Bernacki, S. Wąsek

  6. History and development... • M-RAM – quick view. • Magnetoresistivity. M-RAM based on: • AMR effect - 80-th. • GMR effect - 80-th. • TMR effect – 1995 year. M-RAM M. Bernacki, S. Wąsek

  7. Storage and states of a bit. MRAM: charge and spin. Storage state: • DRAM: charge of capacitor. • Flash, EEPROM: charge on floating gate. • FeRAM: charge of a ferroelectric capacitor. Soft ferromagnet „1” Insulator Hard ferromagnet TMR [%] „0” Field [Oe] M-RAM M. Bernacki, S. Wąsek

  8. Implementationof 1-MTJ / 1-transistor cell. NiFe (free layer) Al2O3 (tunneling barrier) CoFe (fixed layer) SAF Ru CoFe (pinned layer) Word line M-RAM M. Bernacki, S. Wąsek

  9. Write. Word line Without digit line current With digit line current M-RAM M. Bernacki, S. Wąsek

  10. Write. RA [kOhm-um2] Word line Easy axis field [Oe] M-RAM M. Bernacki, S. Wąsek

  11. Read. Word line Word line M-RAM M. Bernacki, S. Wąsek

  12. Sizes of MTJ. Ferromagnet I 4nm NiFe (free layer) 1..2nm Al2O3 (tunneling barrier) Tunnel barrier 3nm CoFe (fixed layer) Ru 3nm CoFe (pinned layer) Ferromagnet II M-RAM M. Bernacki, S. Wąsek

  13. Other MRAM cell architectures. Twin cell arrays: • Circuit is faster than the 1T1TMR implementation. • Less atractive on a cell density and cost basis. Diode cell: • SOI diodes allow the integration of a memory with most circuits without sacrificing silicon wafer surface area. • SOI diodes suitable for this aplication haven’t been developed yet. Transistorless array: • Large reduce in cell area. • Complex circuity required to read bit state, slow read. M-RAM M. Bernacki, S. Wąsek

  14. MRAM 32Kb memory segment. Bit line 0 Bit line 31 Digit line Word line Word line Digit line M-RAM M. Bernacki, S. Wąsek

  15. Reference generator. RMAX RMIN Bit line Digit line Word line Wordline Digit line RMAX RMIN RREF = 1/2(RMAX + RMIN) M-RAM M. Bernacki, S. Wąsek

  16. 1Mb MRAM architecture. Available modes: • Active mode • Sleep mode • Standby mode M-RAM M. Bernacki, S. Wąsek

  17. Examples and performance of M-RAM technology. • Motorola semiconductors –2002. • Freescale semiconductors –2003/2004. • Technology: 0.6um, 5-level metal CMOS, copper interconnects; • Capacity: 1MB • Access time: 35ns • Technology: 0.18mikrons, 5-level metal CMOS, copper interconnects; • Capacity: 4MB; • Access time: 15-20ns M-RAM M. Bernacki, S. Wąsek

  18. Roadmap to future storage technologies. RRAM with CMR M-RAM M. Bernacki, S. Wąsek

  19. Bio – MRAM,vision for tomorrow? Biomolecule labeled by magnetic markers MRAM array M-RAM M. Bernacki, S. Wąsek

  20. References. • Wykład z przedmiotu „Magnetyczne nośniki pamięci”, AGH; • Materiały z Uniwersytetu Bielefeld: wykład „Thin films and nanostructures”; • Materiały seminaryjne z „Motorola Labs”; • Materiały z sympozjum „VLSI symposium 2002”; • www.freescale.com • www.motorola.com M-RAM M. Bernacki, S. Wąsek

  21. Dziękujemy za uwagę  M-RAM M. Bernacki, S. Wąsek

More Related