1 / 17

Assalamu’alaikum wr.wb

Assalamu’alaikum wr.wb. Anggota Kelompok : Dony Ardiyanto Dyah Susilawati Fitri Andayani Nefta Numping. Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping. Persamaan Linear Satu Variabel.

Download Presentation

Assalamu’alaikum wr.wb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Assalamu’alaikum wr.wb Anggota Kelompok : Dony Ardiyanto Dyah Susilawati Fitri Andayani Nefta Numping Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  2. Persamaan Linear Satu Variabel Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  3. Standar Kompetensi : memahami bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel. Kompetensi Dasar : menyelesaikan persamaan linear satu variabel Indikator : 1. Mengenali PLSV dalam berbagai bentuk dan variabel 2. Menentukn bentuk setara dari PLSV dengan cara kedua ruas ditambah, dikurangi, dikalikan atau dibagi dengan bilangan yang sama 3. Menentukan penyelesaian PLSV Tujuan Pembelajaran : Siswa dapat mengenali PLSV dalam berbagai bentuk dan variabel Siswa dapat menentukan bentuk setara dari PLSV dengan cara kedua ruas ditambah, dikurangi, dikalikan atau dibagi dengan bilangan yang sama 3. Siswa dapat menentukan penyelesaian PLSV Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  4. Kalimat terbuka adalah kalimat yan belum dapat ditentukan benar atau salah. • Kalimat-kalimatdibawahinimerupakancontohkalimatterbuka. • X ada kelipatandari 5 • a + 7 = 10 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  5. 1. PENGERTIAN PERSAMAAN LINEAR SATU VARIABEL • Perasamaan Linear Satu Variabel adalah kalimat terbuka yang dihubungkan oleh tanda “sama dengan (=) “ dan hanya memiliki satu variabel berpangkat satu. • Bentuk Umum : ax + b = 0 dengan a ≠ 0 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  6. CONTOH : Dari kalimat berikut tentukan yang merupakan persamaan linear satu variabel ! • 2x – 3 = 5 • x2 – x = 2 • x 5 Penyelesaian: 2x – 3 = 5 Variabel nya adalah x dan berpangkat 1. Jadi merupakan persamaan linear satu variabel. b. x2 – x = 2 Variabel nya adalah x dan berpangkat 1 dan 2. Karena terdapat x berpangkat 2 maka bukan persamaan linear satu variabel. c. X < 5 Variabel nya adalah x dan berpangkat 1 tetapi tidak dihubungkan dengan “=“ Jadi persamaan ini merupakan bukan persamaan linear satu variabel. Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  7. 2. HIMPUNAN PENYELESAIAN PERSAMAAN LINEAR SATU VARIABEL DENGAN SUBSTITUSI Contoh : Himpunan penyelesaian dari x + 4 = 7, jika x variabel adalah bilangan cacah. Yaitu mengganti variabel dengan bilangan yang sesuai sehingga persamaan tersebut menjadi kalimat yang bernilai benar. Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  8. (kalimat salah) Substitusi x = 1, maka 1 + 4 = 7 (kalimat salah) Substitusi x = 2, maka 2 + 4 = 7 (kalimat salah) Substitusi x = 3, maka 3 + 4 = 7 • (kalimat benar) Substitusi x = 4, maka 4 + 4 = 8 (kalimat salah) Ternyata untuk x = 3, persamaan x + 4 = 7 adalah 3 PENYELESAIAN : Jadi x diganti bilangan cacah, di peroleh : Substitusi x = 0, maka 0 + 4 = 7 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  9. Dua persamaan dikatakan ekuivalen jika mempunyai himpunan penyelesaian yang sama dan dinotasikan dengan tanda “ ” 4. MENYELESAIKAN PERSAMAAN LINEAR SATU VARIABEL • a. Menambah atau mengurangi kedua ruas dengan bilangan • yang sama, Contoh : • x – 5 = 4 x - 5 + 5 = 4 + 5(kedua ruas ditambah dengan 5) x = 9 • 4x – 3 = 3x + 5 4x – 3 + 3 = 3x + 5 + 3 (kedua ruas di tambah dengan 3) 4x = 3x + 8 4x – 3x = 3x – 3x + 8 (kedua ruas dikurangi dengan 3x) x = 8 3. PERSAMAAN – PERSAMAAN EKUIVALEN Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  10. b. Mengalikan atau membagi kedua ruas dengan bilangan yang sama • Contoh : • 4x = 24 • = (kedua ruas dibagikan dengan 4) • x = 6 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  11. Menyelesaikan Persamaan Dalam Bentuk Pecahan Contoh : Penyelesaian : Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  12. LATIHAN ! Tentukan himpunan penyelesaian dari persamaan berikut dengan menambah dan mengurangi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat p – 9 = 4 -11 + x = 3 Tentukan himpunan penyelesaian dari persamaan berikut dengan mengalikan dan membagi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat 2x + 3 = 11 7x = 8 + 3x Tentukan himpunan penyelesaian dari persamaan berikut dengan menambah dan mengurangi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat b. Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  13. 2. PENGERTIAN PERTIDAKSAMAAN PERSAMAAN LINEAR SATU VARIABEL • Perasamaan Linear Satu Variabel adalah kalimat matematika yang dihubungkan oleh tanda “ < atau > atau ≤ atau ≥“ dan hanya memiliki satu variabel berpangkat satu. Contoh : • 2x + 1 <10 • x – 5 > 7 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  14. Penyelesaian pertidaksamaan linear satu variabel Kedua ruas ditambah atau dikurangi dengan bilangan yang sama Contoh : x – 4 < 6 x – 4 + 4 < 6 + 4 x < 10 Kedua ruas dikali atau dibagi dengan bilangan yang sama Contoh : 3y < 12 y < 4 Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  15. PERTIDAKSAMAAN LINEAR SATU VARIABEL BENTUK PECAHAN Contoh : Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  16. LATIHAN ! Tentukan himpunan penyelesian dari pertidaksamaan berikut, jika peubah pada himpunan bilangan cacah : 2x – 1 < 7 p + 5 ≥ 10 4x – 2 > 2x + 5 Tentukan himpunan penyelesaian dari pertidaksamaan beruikut, jika variabel pada himpunan bilangan bulat : Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

  17. Terima Kasih!!! Selamat Belajar..! WASSALAMU’ALAIKUM Kreatif oleh : Dony ardianto, Dyah Susilawati, Fitri Andayani dan Nefta Numping

More Related