340 likes | 502 Views
INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and plasma physics 1.Optics and Spectroscopy 2. Atomic Spectroscopy 3. Metal Vapour Lasers. Laboratory Atomic Spectroscopy
E N D
INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and plasma physics 1.Optics and Spectroscopy 2. Atomic Spectroscopy 3. Metal Vapour Lasers
Laboratory Atomic Spectroscopy 1. Employment of HCD for analytical investigations – analyses of layer-by-layer surface of the complex material.- Dr. V. Mihailov 2. Investigation of plasma electron spectroscopy and applications – Dr. P. Pramatarov, Dr. M. Stefanova 3. Atomic constants, atomic spectroscopy and application – Prof. K. Blagoev 4. Quantum optics – Dr. E. Dimova
Experimental methods for lifetimes and transition probabilities determination • Radiative lifetimes • - time evolution of the population • * Beam foil/laser • * time resolved method with: • ++ electron excitation • ++ laser excitation ( LIF) • width of the excited states • + Hanle method Transition probabilities – branching fractions I = 1/Aik Aik = (1/i)(Ii/Ij)
Radiative lifetimes of excited states • - time evolution of the population • * Beam foil/laser • * time resolved method with: • ++ electron excitation • ++ laser excitation ( LIF) • width of the excited states • + Hanle method
Motivation • Obtaining new information about atomic structure and radiative properties; • New or more precise data for radiative lifetimes and transition probabilities in application for: laser physics, plasma physics and especially for astrophysics • Verification of theoretical methods
List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I LIF, calculations YI, Y III LIF, calculations Tb I , LIF in progress
VACUUM SYSTEM GAS INLET POWER SUPPLY ELECTRON GUN MONOCHROMATOR PMP Dt=10 ns AMPLIFIER GENERATOR TIME – AMPLITUDE CONVERTOR AMPLIFIER PC ADC CAMAC
Table 2. Radiative Lifetimes of n3P states of HgI(ns) • K. Blagoev et al Proc SPIE,v5226, 164(2002), Proc. EGAS34,186(2002) • E. Alipieva et al Opt. Sprctr. 43,529(1977); • 3. W. J. Alford et al Phys. Rev A36, 641(1987); • 4. P. Hafner et al J. Phys. B 11, 2975(1978)
Table 1. Radiative Lifetimes of np1P states of HgI(ns). 1. K. Blagoev et al proc. SPIE, v. 5256,164(2002); 2. G. C. King et al J. Phys. B B8, 365(1975); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. E. H. Pinnington et al Canadian J of Physics, 66, 960(1988); 5. T. Anderson et al JQSRT 13,369(1973); 6. P. Hafner et al J. Phys. B 11, 2975(1978)
Table 1a. Radiative Lifetimes of np P states of HgI(ns). • K.Blagoev et al Proc. SPIE, v4397, p. 256
Nd:YAG laser (B) Dye laser KDP BBO SBS compressor Trigger Side view Delay generator Ablation laser Nd:YAG laser (A) Helmholtz coil Computer Rotating Zr target Trigger Top view MCP PMT Transient Digitizer Monochromator Time Resolved Laser Induced Fluorescence Equipment in Lund Laser Centre
H2 Pelin-Brocaprism Lens Lens Raman cell Generation of necessary frequencies using second, third harmonic and Stokes and anti-Stokes Raman components.
List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I - LIF, calculations YI, Y III - LIF, calculations Tb I - LIFin progress
Table 1. Radiative Lifetimes of Zr III excited levels (data in ns). Table2. Excitation schemes R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg , G. Malcheva and K. Blagoev Eur. Phys. J: D40,169,2006.
A typical experimental time-resolved signal from the 53647.21 cm−1 level in Zr III.
Experimental methods for lifetimes and transition probabilities determination • Radiative lifetimes • - time evolution of the population • * Beam foil/laser • * time resolved method with: • ++ electron excitation • ++ laser excitation ( LIF) • width of the excited states • + Hanle method Transition probabilities – branching fractions I = 1/Aik, Aik = (1/i)(Ii/Ij)
Принцип на действие на лазерно-индуцираната спектроскопия (LIBS)
Nd-YAG Laser Monochromator Photodetector Oscilloscope Delay Amplifier OMA III Computer Transition probabilities - LIBS Laser parameters: 1064 nm, 20 Hz, t = 7 ns, E = 240 mJ.
Nd:YAG laser (Quanta Ray GC3),λ = 1064 nm E = 700-800 mJ T≈ 10 ns; 10 Hz Eschelle spectrometer (Mechelle 5000) Sample
J. Campos, M. Ortiz,R. Mayo - Universidad Complutense de Madrid, Spain; • H. L. Xu, S. Svanberg, L. Engstr¨om, H. Lundberg - Lund Institute of Technology, Lund, Sweden • - H. Nilsson - Lund Observatory, Lund, Sweden • E. Biémont, P. Quinet, V. Fivet - Université de Liège, Liège 1, Belgium • P. Palmeri - Astrophysique et Spectroscopie, - Universit´e de Mons– UMONS, Mons, Belgium • Acknowledgements • Laser lab in Europe • Bulgarian National Science Foundation