450 likes | 852 Views
PARTNERS for Mathematics Learning Grade 6 Module 5. Partners for Mathematics Learning. 2. Make the Sale Richie Real is interested in buying a piece of property so that he can build a house The property lots are shown on the grid sheet Each square represents 100 square feet
E N D
PARTNERS forMathematicsLearning Grade6 Module5 Partners forMathematicsLearning
2 MaketheSale RichieRealisinterestedinbuyingapiece ofpropertysothathecanbuildahouse Thepropertylotsareshownonthegrid sheet Eachsquarerepresents100squarefeet Usingcompositeshapes,findtheareaof eachpieceofproperty Partners forMathematicsLearning
3 MaketheSale Eachlotcosts$20,000 Ashisfinancialadvisor,decidewhich pieceofpropertyisthebestbuy WriteMr.Realaletterjustifyingyour choiceusingyourcalculationsandthe additionalinformationprovided Partners forMathematicsLearning
4 MaketheSale Compareyourcompositeshapeswith otherparticipantsinyourgroup Readyourletterstoyourgroup Chooseonelettertosharewiththewhole group Partners forMathematicsLearning
5 MaketheSale Whatotheractivities haveyouusedto teachcompositeshapes? Whatwouldyoudotochangethisactivity tochallengestudents? Partners forMathematicsLearning
6 MaketheSale Whatwouldyoudotopreparestudents beforetheactivity? Whatguidingquestionswouldyouask studentsduringthisactivity? Howwouldyouhavestudentsshare findingsaftertheactivity? Partners forMathematicsLearning
7 What’stheAngle? Usingapieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle) inhalf Partners forMathematicsLearning
8 What’stheAngle? Usingthesamepieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle)in half Oncemore,foldthepaperverticallyinhalf Partners forMathematicsLearning
9 What’stheAngle? Usingthesamepieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle) inhalf Oncemore,foldthepaperverticallyinhalf Openthepaperandfoldithorizontally (hamburgerstyle) Partners forMathematicsLearning
10 What’stheAngle? Usingthissamepieceofnotebookpaper followtheseinstructions: Usearulerandamarkerandtracethe verticallinesegmentinthemiddleofthe page Thislinesegmentiscalledatransversal Partners forMathematicsLearning
11 What’stheAngle? Intheupperleftquadrant,markapointon theleftverticalfoldandlabelitPointA Intheupperrightquadrant, markapointontheright verticalfoldthatisloweron thepagethanbelowPointA (stillinupperrightquadrant) LabelitPointB Partners forMathematicsLearning
12 What’stheAngle? Intheupperleftquadrant, markapointontheleftverticalfoldand labelitPointA Intheupperrightquadrant,markapoint ontherightverticalfoldthatisloweron thepagethanbelowPointAandlabelit PointB DrawalinesegmentbetweenPointsA andB Partners forMathematicsLearning
13 What’stheAngle? DrawalinesegmentbetweenPointsA andB Inthelowerleftquadrant,markapointon theleftverticalfoldandlabelitPointC Inthelowerrightquadrant,markapoint anywhereontheleftverticalfoldinthat quadrantandlabelitPointD ConnectpointsCandD Partners forMathematicsLearning
14 What’stheAngle? Ontheleftsideofthetransversal, labeltheanglesformedas1,2,3,and4 Ontherightsideofthetransversal,label theanglesformedas5,6,7,and8 CompletetheWhat’stheAnglehandout andbereadytodiscussyouranswers Partners forMathematicsLearning
15 What’stheAngle? WhyaretheanglesaboveLineAB andbelowLineCDarecalledexteriorangles? WhyaretheanglesbelowLineABandabove LineCDarecalledinteriorangles? Whichpairsofanglesaresupplementary? Whatothertypesofanglescanwediscuss usingthismodel? Partners forMathematicsLearning
16 VocabularyCheck Listthevocabularythatstudents mustunderstandtocompletethisactivity Sinceweknowthatstudentsneedmultiple experiencestointernalizenewconcepts, whatadditionalexperienceswouldyou suggestforhelpingthemlearnthe vocabulary? Partners forMathematicsLearning
17 What’stheAngle? Whatbasicunderstandingsdo studentsneedaboutangles? Whatskillsaretheyexpectedtodevelop? Whatproblemsolvingactivitycouldbeused nexttoengagestudentsinlearningthese concepts? Partners forMathematicsLearning
18 MakingConnectionswith GCFandLCMPart1 Whatchallengesdoyoufacewhen teachingthegreatestcommonfactorand theleastcommonmultiple? Whatactivitiesdoyouusetomakethe conceptsmeaningfultostudents? Partners forMathematicsLearning
19 MakingConnectionswith GCFandLCMPart1 Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof12 RecordyourresultsontheMaking ConnectionswithGCF–LCMactivitysheet Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof16, recordyourresults Partners forMathematicsLearning
20 MakingConnectionswith GCFandLCMPart1 Whatconnectionscanbemadeamong thedimensionsoftherectangularprisms, thefactorsof12and16,andthegreatest commonfactor? Partners forMathematicsLearning
21 MakingConnectionswith GCFandLCMPart1 Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof8 RecordyourresultsontheMakingConnections withGCF–LCMactivitysheet Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof24,record yourresults Partners forMathematicsLearning
22 MakingConnectionswith GCFandLCMPart1 Whatconnectionscanbemadeamongthe dimensionsoftherectangularprisms,the factorsof8and24,andthegreatest commonfactor? Partners forMathematicsLearning
23 MakingConnectionswith GCFandLCMPart2 Inpairs,buildRectangularPrism1with dimensionsof1x2x3(dimensionsoffirst layer) BuildRectangularPrism2withdimensions of1x3x3(dimensionsoffirstlayer) Whatdothesetwoprismshavein common? Partners forMathematicsLearning
24 MakingConnectionswith GCFandLCMPart2 Calculatethevolumesofthetwo rectangularprismsandrecordyourresults onthehandout Stackanotherlayerofcubesontopof eachrectangularprism Recordthedimensionsandthevolume afterthesecondlayer Partners forMathematicsLearning
25 MakingConnectionswith GCFandLCMPart2 Stackathirdlayerofcubesontopof RectangularPrism1 Recordthedimensionsandthevolume afterthethirdlayer Partners forMathematicsLearning
26 MakingConnectionswith GCFandLCMPart2 CompareandcontrastRectangularPrism 1andRectangularPrism2 Whatconnectioncanbemadebetween theoriginalvolumesandthefinalvolumes of18? Partners forMathematicsLearning
27 MakingConnectionswith GCFandLCMPart2 Repeattheprocesswithnewprismsof size1x2x5(Prism1)and1x2x6 (Prism2) Continueaddinglayersandrecordingnew dimensionsandvolumestofindtheleast commonmultiple Partners forMathematicsLearning
28 MakingConnectionswith GCFandLCMPart2 CompareandcontrastRectangular Prism1andRectangularPrism2 Whatistheleastcommonmultipleof 10and12? Partners forMathematicsLearning
29 MakingConnectionswith GCFandLCMPart2 Howdoesusinggeometricmodelshelp studentsconceptualizegreatestcommon factorandleastcommonmultiple? Howwouldyouusethisactivityin yourclassroom? Whatothermodelsoractivitieshelp studentsconceptualizeGCFandLCM? Partners forMathematicsLearning
30 MysteryNumberPairs Findapairofnumbersthatsatisfytheclues Aftereachclue,youmaychangeyournumbers Clue1:Thegreatestcommonfactoris7 Partners forMathematicsLearning
31 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Partners forMathematicsLearning
32 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Clue3:Theleastcommonmultipleis70 Partners forMathematicsLearning
33 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Clue3:Theleastcommonmultipleis70 Clue4:Oneofthenumbersisevenandthe otherisodd Andtheansweris… Partners forMathematicsLearning
34 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Partners forMathematicsLearning
35 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Partners forMathematicsLearning
36 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Clue3:Thesumofthetwonumbersis60 Partners forMathematicsLearning
37 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Clue3:Thesumofthetwonumbersis60 Clue4:Theleastcommonmultipleis72 Andtheansweris… Partners forMathematicsLearning
38 MysteryNumberPairs Workwithapartneranddevelop anewsetofclues Shareyourclueswithanotherpair ofparticipants Thenwithyouroriginalpartner,createa setoffourcluesthatwillresultinthepair 15and40 Shareyourclueswiththeentiregroup Partners forMathematicsLearning
39 MysteryNumberPairs Howcantheseactivitiesbeusedasan assessmentofstudentunderstanding? Ifastudentdidnotgetthecorrectpair, whatquestionswouldyouasktoidentifyif theproblemisamisconceptionoranerror infollowingthecluescorrectly? Partners forMathematicsLearning
40 NeverSayAnythingaKidCanSay ReadNeverSayAnythingaKid CanSaybyStevenC.Reinhart Respondtothefollowingquestionsasyouread: Whatstrategies/suggestionsresonatedwithyour owninstruction? Whatisonethingyouwillchangeaboutyour instructionafterreadingthisarticle? Knowingthatyourcolleaguesmayormaynot havetimetoreadthisarticle,whatthreeideas wouldyouchoosetosharewithyourcolleagues? Partners forMathematicsLearning
41 NeverSayAnythingaKidCanSay Beforetheprofessionaldevelopment forModule6,besuretoreviewthis article Thereferenceis: Reinhart,S.NeverSayAnythingaKidCan Say,MathematicsTeachingintheMiddle School,Volume.5,Number8,April2000, pp478-483 Partners forMathematicsLearning
42 DPIMathematicsStaff EverlyBroadway,ChiefConsultant ReneeCunninghamKittyRutherford RobinBarbourMaryH.Russell CarmellaFairJohannahMaynor AmySmith PartnersforMathematicsLearningisaMathematics-Science PartnershipProjectfundedbytheNCDepartmentofPublicInstruction. Permissionisgrantedfortheuseofthesematerialsinprofessional developmentinNorthCarolinaPartnersschooldistricts. Partners forMathematicsLearning
43 PMLDisseminationConsultants SusanAllman JuliaCazin RuafikaCobb AnnaCorbett GailCotton JeanetteCox LeanneDaughtry LisaDavis RyanDougherty ShakilaFaqih PatriciaEssick DonnaGodley ShanaRunge YolandaSawyer PennyShockley PatSickles NancyTeague MichelleTucker KanekaTurner BobVorbroker JanWessell DanielWicks CarolWilliams StacyWozny CaraGordon TeryGunter BarbaraHardy KathyHarris JulieKolb ReneeMatney TinaMcSwain MarilynMichue AmandaNorthrup KayonnaPitchford RonPowell SusanRiddle JudithRucker Partners forMathematicsLearning
44 2009Writers PartnersStaff KathyHarris RendyKing TeryGunter JudyRucker PennyShockley NancyTeague JanWessell StacyWozny AmandaBaucom JulieKolb FredaBallard,Webmaster AnitaBowman,OutsideEvaluator AnaFloyd,Reviewer MeghanGriffith,AdministrativeAssistant TimHendrix,Co-PIandHigherEd BenKlein,HigherEducation KatieMawhinney,Co-PIandHigherEd WendyRich,Reviewer CatherineStein,HigherEducation PleasegiveappropriatecredittothePartners forMathematicsLearningprojectwhenusingthe materials. JeaneJoyner,Co-PIandProjectDirector Partners forMathematicsLearning
PARTNERS forMathematicsLearning Grade6 Module5 Partners forMathematicsLearning