1 / 14

Predicting Molecular Polarity

Predicting Molecular Polarity. When there are no polar bonds in a molecule, there is no permanent charge difference between one part of the molecule and another, and the molecule is nonpolar.

dsellers
Download Presentation

Predicting Molecular Polarity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Predicting Molecular Polarity When there are no polar bonds in a molecule, there is no permanent charge difference between one part of the molecule and another, and the molecule is nonpolar. For example, the Cl2 molecule has no polar bonds because the electron charge is identical on both atoms. It is therefore a nonpolar molecule. None of the bonds in hydrocarbon molecules, like hexane, C6H14, are significantly polar, so hydrocarbons are nonpolar molecular substances.

  2. Predicting Molecular Polarity • A molecule can possess polar bonds and still be nonpolar. • If the polar bonds are evenly (or symmetrically) distributed, the bond dipoles cancel and do not create a molecular dipole. • For example, the three bonds in a molecule of BF3 are significantly polar, but they are symmetrically arranged around the central fluorine atom. No side of the molecule has more negative or positive charge than another side, and so the molecule is nonpolar:

  3. Predicting Molecular Polarity • A water molecule is polar because (1) its O-H bonds are significantly polar, and (2) its bent geometry makes the distribution of those polar bonds asymmetrical. • The side of the water molecule containing the more electronegative oxygen atom is partially negative, and the side of the molecule containing the less electronegative hydrogen atoms is partially positive.

More Related