410 likes | 676 Views
Geol 5320 Advanced Igneous and Metamorphic Petrology. Modeling the Petrology and PGE Reef Mineralization of the Sonju Lake Intrusion. December 7, 2009. Sonju Lake Intrusion. The Sonju Lake Intrusion. From MGS Map M-71 (Miller et al., 1989).
E N D
Geol 5320 Advanced Igneous and Metamorphic Petrology Modeling the Petrology and PGE Reef Mineralization of the Sonju Lake Intrusion December 7, 2009
Sonju Lake Intrusion
The Sonju Lake Intrusion From MGS Map M-71 (Miller et al., 1989)
Modal Variation and Cumulus Texture Cumulus Mineral Mode Modal Variations Modal Rock Names Cumulus Code Leucogranite Quartz ferromonzonite Apatitic olivine ferromonzodiorite Apatite olivine ferrodiorite Ol-bearing oxide gabbro Ol-bearing gabbro Troctolite- augite troctolite Dunite Melatroctolite PCFOAg PCFOAh PCFoi PC(O)fi POcfi O OP
Sheet-like Geometry of the Sonju Lake Intrusion Estimation of Bulk Composition Becomes a 1-dimensional problem >10 km 1 km >20 km
Bulk Intrusion Composition = Parent Magma Liquid Line of Descent Calculated by summing composition of rock column above a specific horizon Sc 34 V 192 Cr 111 Co 75 Ni 185 Rb 20 Sr 233 Ba 171 Y 20 Zr 114 Nb 17 Hf 3.1 La 14.7 Ce 33.4 Sm 4.1 Eu 1.6 Tb 0.8 Yb 2.1 Lu .32 SiO2 47.6 TiO2 2.28 Al2O3 14.0 FeOt 14.7 MnO 0.21 MgO 8.3 CaO 9.4 Na2O 2.47 K2O 0.55 P2O5 0.30 Volatiles 0.20 Total 100.0 mg# 50.2 = moderately evolved olivine tholeiitic basalt From Miller and Chandler (1998) and Miller and Ripley (1997)
Fractional Crystallization Modelling CHAOS 2 (NIELSEN, 1990) Model Parameters : fO2 = -2 log QFM; trapped liquid = 20%
Discovery of Stratiform PGE Mineralization Skaergaard Intrusion 0 100 200 300 400 500 600 Cu (ppm) Feb. 1999
Outcrop Sampling PGE Reef
SLI Chemostratigraphy From Miller (1999)
Evolution of Sulfide in the Sonju Lake Intrusion
Exploration Drilling by Franconia Minerals July 2002
Core Logging and Sampling Plagioclase 65-73% Sampling Regime Phase 1 – 1’ sample every 10’ Phase 1- continuous 1’ across PMZ 423 Total Whole Rock Analyses 1 cm
Meters above Cu-Au break Cu-Pd Ratios SL02-1 SL02-1 Cu/Pd Precious Metals Zone (PMZ) Pd(ppb) after Barnes et al. (1993)
PMZ Metallogenesis • What was the PGE mineralizing agent? Cu-Fe Sulfide - close physical association of PGM and “cumulus” chalcopyrite • Why the paucity of sulfide in the PMZ? Sulfide dissolution by deuteric and low-T hydrothermal fluids – dissolution and replacement textures in sulfide associated with silicate alteration; secondary pyrite above PMZ • Are the stratigraphic variations in grade primary? Yes for Pd & Pt, not for Cu and Au – Pd and Pt concentrations correlate to subtle silicate layering; textural evidence of unreactive PGM; experimental evidence of Au and Cu mobility in oxidizing fluids
PGE Mineralizing Agent? Cu-Fe Sulfide? Fe-Ti Oxide??? Data from SL02-1 PMZ 0 to 105m below Cu-Au Break
“Cumulus” Sulfide in the PMZ Meters above Cu-Au break SL02-1 SL02-3 SL02-2 Bn Cp 100 um Cp Precious Metals Zone (PMZ)
Paucity of Sulfide in PMZ? PGM Chl-Act Uralite UralitizedAugite
Are Metal Offsets Primary? • Kinetic Model • Preservation of variable degrees of disequilibrium • during sulfide liquation • Controls on Equilibrium • Sulf/Sil distribution coefficient • Diffusivity of metals in silicate • melt • Nucleation density of sulfide • droplet • Size/Growth rates of sulfide • droplets • Settling rate of sulfide (strain • rate of silicate melt)
Relationship of PGE to Modal Variations in the PMZ Plagioclase Augite Fe-Ti Oxide
Correlation of Leucocratic Gabbro to Skaergaard Platinova Reefs From Andersen et al. (1998)
Restite PGM / Resorbed Sulfide 50 um 50 um Augite Augite Cp Actinolite Augite Cp Augite Pd-Sb Pd-Sb Chlorite- Actinolite Plagioclase 50 um Pt-Pd-As Cp
Mineralization Model “Downer” Stage PGE scavenging of magma column complete Initial sulfide saturation Upgrading sulfide in intercumulus magma
Dsulf/sil~104-108 Rapid Diffusion Dsulf/sil~102 Slow Diffusion
Mineralization Model “Upper” Stage
Comparing the SLI to other PGE reefs Skaergaard-type Offset Classic Meters above sulfide increase
PGE reefs
PELE – MELTS-based Modeling Program developed by Alan Boudreau
Oxygen Buffers MH - magnetite-hematite 4 Fe3O4 + O2 = 6 Fe2O3 NiNiO nickel-nickel oxide 2 Ni + O2 = 2 NiO FMQ fayalite-magnetite-qtz 3 Fe2SiO4 +O2 = 2 Fe3O4 + 3 SiO2 WM wustite -magnetite 3 Fe1-xO + O2 ~ Fe3O4 IW iron - wustite 2(1-x) Fe + O2 = 2 Fe1-xO QIF quartz-iron-fayalite 2 Fe + SiO2 + O2 = Fe2SiO4 Common fO2 range for magmatic conditions arc non-arc