160 likes | 185 Views
HPT. Roland Lemke. Introduction. History Program inception 1986 Feasibility studies 1988 fund of 8M DM by the Ministry of Economics, Trade and Technology, NRW 1989 Poltical problems, between AIRUB and industry and reunifcation 1992 Several attempts meanwhile. History (cont.).
E N D
HPT Roland Lemke R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Introduction • History • Program inception 1986 • Feasibility studies 1988 • fund of 8M DM by the Ministry of Economics, Trade and Technology, NRW 1989 • Poltical problems, between AIRUB and industry and reunifcation 1992 • Several attempts meanwhile R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
History (cont.) • Ministry of School, Education, Science and Research (MSWWF), NRW grants new funds 1997 • HPT comes to Bochum 1999 • Replacing of the old driving system 2001 • Replacing of the old software system 2002 • First pointing tests 2003 R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Technical concept • direct-motor driven roller screw, accuracy 10 nm • weight of a single leg is about 200 kg • Optical configuration • 1.5m primary mirror • Focal ratio f/D = 2.5 • Field rotation 45 deg R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
M1 • 55mmthin meniscus, weight 120kg, 1.2 t/qm VLT 10 t/qm • an actively controlled primary which consists of a thin Zerodur meniscus that is permanently fixed to a CFRP grid structure R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
M2 a secondary whose support legs are also designed as a Hexapod to compensate for gravitational deformation R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Code generation • Automatic generation of an BACI DO from a given IDL, including • *.h and *.cpp files • Makefile • *.body function body • *.xsd and *.xml files for CDB R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Software R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
CCD software • Different types of camera hardware but only one ACS module • Camera factory class • One interface class Class structure: R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
CCD: class structure R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
ACS in CCD´s real life: What is in use now? • Monitoring possibilities • Triggering of applications • Data transfer via sequences (later via Notification Channel or bulk data channel) • 1 Module – 2 CCD camera manufacturer (+ 1 simulation) – 4 different configurations R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Next steps • Alignment of M2 • Installation of Shack-Hartmann Unit • Shipment to Chile R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
The usage of ACS • Pros • easy to integrate peripherials (GPS clocks, Game pads, WebCams, CCDs, Motor control units, DIO and AIO boards) • easy to develop GUIs with Python and Qt • porting of existing MS Windows drivers to Linux are possible without too much effort and are easy to integrate into ACS. • The kernel of RH 7.2 can be replaced on nearly all hardware controlling PCs (WLAN, USB driver, GPS board driver, CCD drivers) R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Usage of ACS, remaining problems • .... (resolved by reading the manual) • .... (resolved by asking Gianluca, and implementing monitors) • .... (not really a ACS problem) R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
Conclusions • ACS does what is required • Sharing code among projects • Discussions between the groups using ACS R. Lemke Astronomisches Institut der Ruhr-Universität Bochum
CCD: class structure R. Lemke Astronomisches Institut der Ruhr-Universität Bochum