1 / 9

Photoelectric Equation:

Incident light. Cathode. Anode. A. V. +. -. Stopping potential:. V o = 0.800 V. Example 4: The threshold frequency for a given surface is 1.09 x 10 15 Hz . What is the stopping potential for incident light whose photon energy is 8.48 x 10 -19 J ? . Photoelectric Equation:.

edda
Download Presentation

Photoelectric Equation:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Incident light Cathode Anode A V + - Stopping potential: Vo= 0.800 V Example 4:The threshold frequency for a given surface is 1.09 x 1015 Hz. What is the stopping potential for incident light whose photon energy is 8.48 x 10-19 J? Photoelectric Equation: W = (6.63 x 10-34 Js)(1.09 x 1015 Hz) =7.20 x 10-19 J

  2. Total Energy, E Total Relativistic Energy Recall that the formula for the relativistic total energy was given by: For a particle with zero momentum p= 0: E =moc2 A light photon has mo= 0, but it does have momentum p: E =pc

  3. Wavelength of a photon: de Broglie Wavelength: Waves and Particles We know that light behaves as both a wave and a particle. The rest mass of a photon is zero, and its wavelength can be found from momentum. All objects, not just EM waves, have wavelengths which can be found from their momentum

  4. Momentum from K: Finding Momentum from K.E. In working with particles of momentum p = mv, it is often necessary to find the momentum from the given kinetic energy K. Recall the formulas: K = ½mv2 ; p = mv Multiply first Equation by m: mK =½m2v2= ½p2

  5. - e- 90 eV Example 5:What is the de Broglie wavelength of a 90-eV electron? (me = 9.1 x 10-31 kg.) Next, we find momentum from the kinetic energy: p = 5.12x 10-24 kg m/s l = 0.122 nm

  6. Planck’s Equation: E = hf (h = 6.626 x 10-34 J s) Photon 1 eV = 1.60 x 10-19 J The Electron-volt: E = hf 1 MeV = 1.6 x 10-13 J 1 keV = 1.6 x 10-16 J Summary Apparently, light consists of tiny bundles of energy called photons, each having a well-defined quantum of energy.

  7. Incident light Cathode Anode A C Ammeter Threshold wavelength lo A + - Summary (Cont.) If lis innm, the energy ineV is found from: Wavelength in nm; Energy in eV

  8. Stopping potential V Slope y fo x Frequency Summary (Cont.) Planck’s Experiment: Incident light Cathode Anode V A + - Potentiometer Kmax = eVo

  9. Wavelength of a photon: de Broglie Wavelength: Summary (Cont.) Quantum physics works for waves or particles: For a particle with zero momentump = 0: E =moc2 A light photon has mo = 0, but it does have momentum p: E =pc

More Related