620 likes | 893 Views
REACTION STOICHIOMETRY. 1792 JEREMIAS RICHTER The amount of substances produced or consumed in chemical reactions can be quantified. 4F-1 (of 14). INFORMATION FROM CHEMICAL EQUATIONS. 2H 2 + O 2 → 2H 2 O. 2 molecules 2 moles 0.84 moles
E N D
REACTION STOICHIOMETRY 1792 JEREMIAS RICHTER The amount of substances produced or consumed in chemical reactions can be quantified 4F-1 (of 14)
INFORMATION FROM CHEMICAL EQUATIONS 2H2 + O2 → 2H2O 2 molecules 2 moles 0.84 moles 0.028 moles 1 molecule 1 moles 0.42 moles 0.014 moles 2 molecules 2 moles 0.84 moles 0.028 moles The moles that react and form do so in the ratio of the balanced equation 4F-2 (of 14)
INFORMATION FROM CHEMICAL EQUATIONS 2H2 + O2 → 2H2O starting reacting ending 0.60 moles -0.60 moles 0.00 moles 0.40 moles -0.30 moles 0.10 moles 0.00 moles +0.60 moles 0.60 moles 2H2 + O2 → 2H2O starting reacting ending 0.50 moles -0.40 moles 0.10 moles 0.20 moles -0.20 moles 0.00 moles 0.00 moles +0.40 moles 0.40 moles The moles that react and form do so in the ratio of the balanced equation 4F-3 (of 14)
MASS CALCULATIONS Calculate the mass of oxygen needed to burn 5.00 g of propanol, C3H8O. 4½ C3H8O + O2→ CO2 + H2O 3 4 4F-4 (of 14)
MASS CALCULATIONS Calculate the mass of oxygen needed to burn 5.00 g of propanol, C3H8O. 9 C3H8O + O2→ CO2 + H2O 2 6 8 x g 5.00 g 2 mol 9 mol 2 mol C3H8O = 9 mol O2 5.00 g C3H8O x 1 mol C3H8O ____________________ 60.094g C3H8O x 9 mol O2 _________________ 2 mol C3H8O x 32.00 g O2 ______________ 1 mol O2 = 12.0 g O2 4F-5 (of 14)
Calculate the mass of carbon dioxide produced from the 5.00 g of propanol. 9 C3H8O + O2→ CO2 + H2O 2 6 8 5.00 g x g 2 mol 6 mol 2 mol C3H8O = 6 mol CO2 5.00 g C3H8O x 1 mol C3H8O ____________________ 60.094g C3H8O x 6 mol CO2 _________________ 2 mol C3H8O x 44.01 g CO2 ________________ 1 mol CO2 = 11.0 g CO2 4F-6 (of 14)
9 C3H8O + O2→ 2 6 CO2 + H2O 8 5.0 g 6.0 g 12.0 g 11.0 g 4F-7 (of 14)
LIMITING REACTANT CALCULATIONS LIMITING REACTANT – The reactant that is completely used up in a reaction 4F-8 (of 14)
x 12 pieces 22 slices 12 pieces x 1 sandwich _______________ 1 piece = 12 sandwiches 22 slices x 1 sandwich _______________ 2 slices = 11 sandwiches actual amount produced limiting reactant 4F-9 (of 14)
Calculate the mass of tungsten metal produced when 25.0 g of barium reacts with 26.0 g of tungsten (III) fluoride. Ba + WF3→ 3 2 3 BaF2 + W 2 26.0 g 25.0 g x g 2 mol 3 mol 2 mol 4F-10 (of 14)
Calculate the mass of tungsten metal produced when 25.0 g of barium reacts with 26.0 g of tungsten (III) fluoride. Ba + WF3→ 3 2 3 BaF2 + W 2 26.0 g 25.0 g x g 2 mol 3 mol 2 mol 25.0 g Ba x 1 mol Ba _______________ 137.3 g Ba x 2 mol W ____________ 3 mol Ba x 183.8 g W ______________ 1 mol W = 22.3 g W 4F-11 (of 14)
Calculate the mass of tungsten metal produced when 25.0 g of barium reacts with 26.0 g of tungsten (III) fluoride. Ba + WF3→ 3 2 3 BaF2 + W 2 26.0 g 25.0 g x g 2 mol 3 mol 2 mol 25.0 g Ba x 1 mol Ba _______________ 137.3 g Ba x 2 mol W ____________ 3 mol Ba x 183.8 g W _______________ 1 mol W = 22.3 g W 26.0 g WF3 x 1 mol WF3 _________________ 240.8 g WF3 x 183.8 g W _______________ 1 mol W = 19.8 g W x 2 mol W _____________ 2 mol WF3 WF3 is the limiting reactant 19.8 g W are produced 4F-12 (of 14)
Determine the percentage of magnesium and silver in an alloy of the two metals. A 6.50 gram sample of the alloy reacts with 14.5 grams of hydrogen chloride. 2 Mg + HCl → MgCl2 + H2 x g 14.5 g 1 mol 2 mol 1 mol Mg = 2 mol HCl 14.5 g HCl x 1 molHCl ________________ 36.458g HCl x 1 mol Mg ______________ 2 molHCl x 24.31 g Mg ______________ 1 mol Mg = 4.834 g Mg 4.834 g Mg x 100 _______________ 6.50 g alloy = 74.4% Mg 100% - 74.4% = 25.6% Ag 4F-13 (of 14)
Determine the percentage by mass of iodide in a solid unknown. A 1.17 gram sample of the unknown is dissolved in water, treated with lead (II) ions, and 1.42 grams of precipitate are collected. Pb2+ + I-→ 2 PbI2 x g 1.42 g 2 mol 1 mol 1.42 g PbI2 x 1 mol PbI2 _________________ 461.0 g PbI2 x 126.9 g I- _____________ 1 mol I- = 0.7818 g I- x 2 mol I- _____________ 1 mol PbI2 x 100 = 66.8% I- in the sample 0.7818 g I- ___________________ 1.17 g sample 4F-14 (of 14)
MOLES FROM SOLUTION DATA Find the moles of potassium carbonate contained in 275 mL of a 0.300 M potassium carbonate solution. M = n ___ V MV = n 0.300 mol K2CO3 ______________________ L solution x 0.275 L solution = 0.0825 mol K2CO3 4G-1 (of 12)
Find the moles of each ion in the 0.300 M potassium carbonate solution. 0.0825 mol K2CO3 x 2 = 0.165 mol K+ 0.0825 mol K2CO3 x 1 = 0.0825 mol CO32- 4G-2 (of 12)
10.0 mL of 0.450 M BaCl2 are mixed with 20.0 mL of 0.300 M K2SO4. (a) Find the moles of each ion in the solution. 0.450 mol BaCl2 ______________________ L solution x 0.0100 L solution = 0.004500 mol BaCl2 0.00450 mol Ba2+ and 0.00900 mol Cl- 0.300 mol K2SO4 ______________________ L solution x 0.0200 L solution = 0.006000 mol K2SO4 0.0120 mol K+ and 0.00600 mol SO42- 4G-3 (of 12)
10.0 mL of 0.450 M BaCl2 are mixed with 20.0 mL of 0.300 M K2SO4. (b) Find the moles of each ion after any reaction. Ba2+ + SO42-→ BaSO4 0.00450 0.00600 0 -0.00450 -0.00450 +0.00450 0 0.00150 0.00450 Initial moles Reacting moles Final moles 0 mol Ba2+ 0.00150 mol SO42- 0.00900 mol Cl- 0.0120 mol K+ 4G-4 (of 12)
10.0 mL of 0.450 M BaCl2 are mixed with 20.0 mL of 0.300 M K2SO4. (c) Find the final molarities of each ion in the solution. 0 mol Ba2+ ______________________ 0.0300 L solution = 0 M Ba2+ 0.00150 mol SO42- _______________________ 0.0300 L solution = 0.0500 M SO42- 0.00900 mol Cl- _______________________ 0.0300 L solution = 0.300 M Cl- 0.0120 mol K+ _______________________ 0.0300 L solution = 0.400 M K+ 4G-5 (of 12)
20.0 mL of 0.350 M HCl are mixed with 30.0 mL of 0.250 M NaOH. (a) Find the moles of each ion in the solution. 0.350 mol HCl ___________________ L solution x 0.0200 L solution = 0.007000 mol HCl 0.00700 mol H+ and 0.00700 mol Cl- 0.250 mol NaOH ______________________ L solution x 0.0300 L solution = 0.007500 mol NaOH 0.00750 mol Na+ and 0.00750 mol OH- 4G-6 (of 12)
20.0 mL of 0.350 M HCl are mixed with 30.0 mL of 0.250 M NaOH. (b) Find the moles of each ion after any reaction. H+ + OH-→ H2O 0.00700 0.00750 0 -0.00700 -0.00700 +0.00700 0 0.00050 0.00700 Initial moles Reacting moles Final moles 0 mol H+ 0.00050 mol OH- 0.00700 mol Cl- 0.00750 mol Na+ 4G-7 (of 12)
20.0 mL of 0.350 M HCl are mixed with 30.0 mL of 0.250 M NaOH. (c) Find the final molarities of each ion in the solution. 0 mol H+ ______________________ 0.0500 L solution = 0 M H+ 0.00050 mol OH- _______________________ 0.0500 L solution = 0.010 M OH- 0.00700 mol Cl- _______________________ 0.0500 L solution = 0.140 M Cl- 0.00750 mol Na+ _______________________ 0.0500 L solution = 0.150 M Na+ 4G-8 (of 12)
20.0 mL of 0.350 M HCl are mixed with 30.0 mL of 0.250 M NaOH. (d) Find the mass of water produced by the reaction. 0.007000 mol H2O x 18.016g H2O __________________ 1 mol H2O = 0.126 g H2O 4G-9 (of 12)
DILUTION CALCULATIONS When a solution is diluted, only solvent is added , so the moles of solute are unchanged mol solute (concentrated) = mol solute (diluted) MCVC = MDVD 4G-10 (of 12)
Calculate the volume of 6.00 M ammonia needed to prepare 250. mL of a 0.100 M ammonia solution. MCVC= MDVD MC= VC = 6.00 M ? MD= VD = 0.100 M 250. mL VC= MDVD _______ MC = (0.100 M)(250. mL) ________________________ (6.00 M) = 4.17 mL 4G-11 (of 12)
Calculate the volume of water that must be added to 5.00 mL of concentrated hydrochloric acid (12.1 M) to make the acid 3.00 M. MCVC= MDVD MC= VC = 12.1 M 5.00 mL MD= VD = 3.00 M ? MCVC= VD _______ MD = (12.1 M)(5.00 mL) _______________________ (3.00 M) = 20.2 mL 20.2 mL - 5.00 mL ____________ Volume of dilute solution Volume of concentrated solution 15.2 mL Water that must be added 4G-12 (of 12)
REACTIONS IN SOLUTION TITRATION – A technique in which one solution is used to analysis another Buret: a solution of 1 reactant of known concentration Flask: another reactant of unknown concentration, mass, etc. STANDARD SOLUTION – A solution of known concentration 4H-1 (of 13)
The mass of sodium bicarbonate in an antacid tablet is to be determined. ACID-BASE INDICATOR – A weak organic acid or base that changes color in acidic or basic solutions The tablet is dissolved in water, an acid-base indicator added, and 21.5 mL of a 0.300 M hydrochloric acid solution produces a color change. NaHCO3 + HCl → NaCl + H2O + CO2 21.5 mL 0.300 M x g 1 mol 1 mol 0.300 mol HCl x 0.0215 L solution __________________ L solution x 1 mol NaHCO3 _________________ 1 mol HCl x 84.008g NaHCO3 _______________________ molNaHCO3 = 0.542 g NaHCO3 4H-2 (of 13)
A sodium hydroxide solution is to be standardized. 34.2 mL of the sodium hydroxide solution are required to neutralize a solution made with 0.619 grams of solid H2C2O4.2H2O (m = 126.08 g/mol). _ 4 2 NaOH + H2C2O4→ 2 .2H2O Na2C2O4 + H2O 34.2 mL x M 0.619 g 1 mol 2 mol 0.619 g O.A.D. x 1 mol O.A.D. ____________________ 126.08 g O.A.D. x 1 _______________________ 0.0342 L solution x 2 mol NaOH _________________ 1 mol O.A.D. = 0.287 M NaOH 4H-3 (of 13)
A 10.0 mL aliquot of a solution containing V2+ ions is acidified, and 32.7 mL of a 0.115 M MnO4- solution produces a light purple color. If the V2+ was oxidized to V5+, determine the molarity of the V2+ in the original solution. MnO4- (aq) + V2+ (aq) → Mn2+ + V5+ +7 -2 +2 +2 +5 ( ) x 3 5e- + 8H+ + MnO4-→ Mn2+ + 4H2O V2+→ V5+ ( ) x 5 + 3e- 4H-4 (of 13)
A 10.0 mL aliquot of a solution containing V2+ ions is acidified, and 32.7 mL of a 0.115 M MnO4- solution produces a light purple color. If the V2+ was oxidized to V5+, determine the molarity of the V2+ in the original solution. MnO4- (aq) + V2+ (aq) → Mn2+ + V5+ +7 -2 +2 +2 +5 15e- + 24H+ + 3MnO4-→ 3Mn2+ + 12H2O 5V2+→ 5V5+ + 15e- 15e- + 24H+ + 3MnO4- + 5V2+→ 3Mn2+ + 12H2O + 5V5+ + 15e- 4H-5 (of 13)
A 10.0 mL aliquot of a solution containing V2+ ions is acidified, and 32.7 mL of a 0.115 M MnO4- solution produces a light purple color. If the V2+ was oxidized to V5+, determine the molarity of the V2+ in the original solution. 24H+(aq) + 3MnO4- (aq) + 5V2+(aq)→ 3Mn2+ (aq) + 12H2O(l) + 5V5+(aq) 32.7 mL 0.115 M 10.0 mL x M 3 mol 5 mol 0.115 mol MnO4- x 0.0327 L solution _____________________ L solution x 5 mol V2+ ________________ 3 mol MnO4- x 1 _______________________ 0.0100 L solution = 0.627 M V2+ 4H-6 (of 13)
Calculate the molar mass of a diprotic acid if 0.409 grams of it are neutralized by 19.50 mL of a 0.287 M sodium hydroxide solution. molar mass H2X = grams H2X _______________ moles H2X molar mass H2X = 0.109 grams H2X ______________________ ? moles H2X 4H-7 (of 13)
Calculate the molar mass of a diprotic acid if 0.409 grams of it are neutralized by 19.50 mL of a 0.287 M sodium hydroxide solution. H2X + NaOH → 2 H(OH) + Na2X 2 0.409 g x mol 19.50 mL 0.287 M 2 mol 1 mol 0.287 mol NaOH x 0.01950 L sol’n _____________________ L sol’n x 1 mol H2X _______________ 2 mol NaOH = 0.002798 mol H2X 0.409 g H2X ________________________ 0.002798 mol H2X = 146 g/mol 4H-8 (of 13)
The molarity of an aluminum hydroxide solution is to be determined. An acid-base indicator is added to 10.0 mL of the aluminum hydroxide solution, and 12.5 mL of 0.300 M hydrochloric acid produces a color change. Al(OH)3 + HCl → 3 AlCl3 + H(OH) 3 12.5 mL 0.300 M 10.0 mL x M 1 mol 3 mol 0.300 mol HCl x 0.0125 L solution __________________ L solution x 1 mol Al(OH)3 _________________ 3 mol HCl x 1 ____________ 0.0100 L = 0.125 M Al(OH)3 4H-9 (of 13)
Cinnabar ore contains S2- ions. A 1.534 g sample of the ore is dissolved in acid, then all the S2- is oxidized by 20.4 mL of a 0.110 M Cr2O72- solution. Determine the percentage of S2- in cinnabar ore. K2Cr2O7 (aq) + S2- (aq)→ K+(aq) + Cr2O72- (aq) + S2- (aq) → Cr3+ + S8 +1 +6 -2 -2 +3 0 ( ) x 8 6e- + 14H+ + Cr2O72-→ Cr3+ 2 + 7H2O 8 S2-→ S8 ( ) x 3 + 16e- 4H-10 (of 13)
Cinnabar ore contains S2- ions. A 1.534 g sample of the ore is dissolved in acid, then all the S2- is oxidized by 20.4 mL of a 0.110 M Cr2O72- solution. Determine the percentage of S2- in cinnabar ore. K2Cr2O7 (aq) + S2- (aq)→ K+(aq) + Cr2O72- (aq) + S2- (aq) → Cr3+ + S8 +1 +6 -2 -2 +3 0 48e- + 112H+ + 8Cr2O72-→ 16Cr3+ + 56H2O 24S2-→ 3S8 + 48e- 48e- + 112H+ + 8Cr2O72- + 24S2-→ 16Cr3+ + 56H2O + 3S8 + 48e- 4H-11 (of 13)
Cinnabar ore contains S2- ions. A 1.534 g sample of the ore is dissolved in acid, then all the S2- is oxidized by 20.4 mL of a 0.110 M Cr2O72- solution. Determine the percentage of S2- in cinnabar ore. 112H+(aq) + 8Cr2O72- (aq) + 24S2-(aq)→ 16Cr3+ (aq) + 56H2O(l) + 3S8(s) 20.4 mL 0.110 M x g 8 mol 24 mol 0.110 mol Cr2O72- x 0.0204 L solution _______________________ L solution x 24 mol S2- _________________ 8 mol Cr2O72- x 32.07 g S2- _____________ mol S2- = 0.2159 g S2- 0.2159 g S2- x 100 _______________ 1.534 g ore = 14.1% S2- in the ore 4H-12 (of 13)
Calculate the molarity of a sulfuric acid solution if 25.0 mL of it are neutralized by 33.5 mL of a 0.240 M potassium hydroxide solution. H2SO4 + KOH → 2 H(OH) + K2SO4 2 33.5 mL 0.240 M 25.0 mL x M 1 mol 2 mol 0.240 mol KOH x 0.0335 L solution ___________________ L solution x 1 mol H2SO4 _________________ 2 mol KOH x 1 ____________ 0.0250 L = 0.161 M H2SO4 4H-13 (of 13)
MOLAR MASSES AND STOICHIOMETRIC CONVERSIONS Calculate the molar mass of ethanol, C2H5OH • 2 mol C (12.01 g/mol) = 24.02 g • 6 mol H (1.008 g/mol) = 6.048 g • 1 mol O (16.00 g/mol) = 16.00 g • 46.068 g 46.068 g C2H5OH = 1 molC2H5OH 4I-1 (of 8)
Calculate the number of ethanol molecules in 25.0 mL of pure ethanol. The density of the ethanol is 0.789 g/mL. 0.789 g C2H5OH = 1 mL C2H5OH 25.0 mL C2H5OH x 0.789 g C2H5OH ____________________ 1 mL C2H5OH x 1 mol C2H5OH ______________________ 46.068g C2H5OH x 6.022 x 1023 molecules C2H5OH ________________________________________ 1 mol C2H5OH = 2.58 x 1023 molecules C2H5OH 4I-2 (of 8)
Calculate the number of carbon atoms in a 10.0 mL sample of pure ethanol. 10.0 mL C2H5OH x 1 mol C2H5OH ______________________ 46.068g C2H5OH x 2 mol C __________________ 1 mol C2H5OH x 0.789 g C2H5OH ____________________ 1 mL C2H5OH x 6.022 x 1023 atoms C ___________________________ 1 mol C = 2.06 x 1023 atoms C 4I-3 (of 8)
Calculate the number of ethanol molecules in 45.0 mL of 80. proof vodka. The density of the vodka is 0.92 g/mL. 80. Proof vodka = 40.% C2H5OH by volume 100 mL vodka = 40. mL C2H5OH 45.0 mL vodka x 40. mL C2H5OH ____________________ 100 mL vodka x 0.789 g C2H5OH ____________________ 1 mL C2H5OH x 1 mol C2H5OH ______________________ 46.068g C2H5OH x 6.022 x 1023 molecules C2H5OH ________________________________________ 1 mol C2H5OH = 1.9 x 1023 molecules C2H5OH 4I-4 (of 8)
Calculate the mass of one ethanol molecule, in grams. 1 molecule C2H5OH x 46.068g C2H5OH _______________________ molC2H5OH x mol C2H5OH ________________________________________ 6.022 x 1023 molecules C2H5OH = 7.650 x 10-23g 4I-5 (of 8)
g M mol M = 71.0 g M ? mol M A metal oxide with the formula M2O3 is 29.0% oxygen by mass. Calculate the molar mass of metal M. Molar Mass of M = 29.0 g O = 1.208 mol M x 1 mol O ____________ 16.00 g O x 2 mol M __________ 3 mol O 71.0 g M _________________ 1.208mol M = 58.8 g/mol 4I-6 (of 8)
THEORETICAL PERCENT COMPOSITION OF COMPOUNDS BY MASS Calculate the percent composition by mass of sodium nitrate NaNO3 • 1 mol Na (22.99 g/mol) = 22.99 g • 1 mol N (14.01 g/mol) = 14.01 g • 3 mol O (16.00 g/mol) = 48.00 g • 85.00 g % Na = 22.99 g Na 100 ___________________ 85.00 g NaNO3 = 27.05 % Na % N = 14.01 g N 100 ___________________ 85.00 g NaNO3 = 16.48 % N % O = 48.00 g O 100 ___________________ 85.00 g NaNO3 = 56.47 % O 4I-7 (of 8)
Calculate the percentage by mass of water in barium chloride dihydrate • BaCl2.2H2O • 1 mol Ba (137.3 g/mol) = 137.3 g • 2 molCl (35.45 g/mol) = 70.90 g • 2 mol H2O (18.016g/mol) = 36.032 g • 244.232 g % H2O = 36.032g H2O 100 ____________________________ 244.232g BaCl2.2H2O = 14.75 % H2O 4I-8 (of 8)