1 / 22

Status of the CBM experiment

Status of the CBM experiment. V. Friese Gesellschaft f ür Schwerionenforschung Darmstadt, Germany v.friese@gsi.de. for the CBM Collaboration. RHIC. RHIC, SPS : crossover QGP  hadrons almost immediate freeze-out. SPS. SIS300. dilute hadron gas. SIS300 :

elden
Download Presentation

Status of the CBM experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany v.friese@gsi.de for the CBM Collaboration

  2. RHIC • RHIC, SPS : • crossover QGP  hadrons • almost immediate freeze-out SPS SIS300 dilute hadron gas • SIS300 : • system experiences a stage of dense baryonic matter • may come near to the end point: critical phenomena ? hadronic phase nuclei The goal of high energy heavy-ion physics: Exploring the QCD phase diagram lattice QCD : Fodor / Katz, Nucl. Phys. A 715 (2003) 319 dense bayonic medium 2 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  3. NA49, J. Phys. G 29 (2003), and preliminary Au+Au / Pb+Pb SPS RHIC AGS p+p That’s where CBM will measure ! 30 AGeV : Exciting physics Sharp structure in K+/+ exc. fct., constancy of kaon slopes : Signal of 1st order PT ? 3 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  4. Physics questions and observables Hadron properties in dense matter Chiral symmetry restoration, generation of hadron masses Penetrating probes :   e+e- with high precision / statistics Threshold production of open charm : D hadrons Deconfinement, phase transition, critical phenomena Strangeness production, flow, fluctuations , K , p direct , ,  via decay topology J/  e+e- Nuclear equation of state at highest baryon densities Exc. fct. of particle production and collective flow 4 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  5. W. Cassing et al, Nucl. Phys. A 691(2001) 753 Challenges and opportunities   e+e-, J/  e+e-, , D : extremely rare probes ! Highest beam intensities / interaction rates needed ! Opportunity: Systematic measurement of these probes as function of beam energy and projectile/target size 5 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  6. central Au+Au @ 25 AGeV, UrQMD + GEANT Conditions and requirements High track multiplicity (700-1000) Beam intensity 109 ions/sec. High interaction rate (10 MHz) Need fast and radiation hard detectors Detector tasks: Tracking in high-density environment STS + TRD Reconstruction of secondary vertices (resolution  50 m) STS Hadron identification :  / K / p separation (t  80 ps) TOF Lepton identification :  / e separation (pion suppression 10-4) TRD + RICH 6 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  7. The CBM detector Setup in GEANT4 7 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  8. R&D working packages Feasibility, Simulations Design & construction of detectors Data Acquis., Analysis GEANT4:GSI Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Krakow Univ. LBNL Berkeley Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt KFKI Budapest Silesia Univ. ,ω, e+e- Univ. Krakow,JINR-LHE Dubna D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague RPC-TOF LIP Coimbra, Univ. S. de Compostela, Univ. Heidelberg, GSI Darmstadt, NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg Analysis GSI Darmstadt, Heidelberg Univ, J/ψ e+e- INR Moscow Hadron ID Heidelberg Univ,Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Magnet JINR-LHE, Dubna GSI Darmstadt Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna ECAL ITEP Moscow RICH IHEP Protvino 8 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  9. Crucial detector parameters: Material in tracking stations Single hit resolution Feasibility study : open charm D0 K-+ (central Au+Au @ 25 AGeV) c = 124 m, BR = 3.8 % BG suppression 2 x 105 Assuming <D0> = 10-3 : S/B  1 SNR = 3 at 2 x 106 events detection rate 13,000 / h Key variable to suppress background: secondary vertex position Similar study for D+  K-+ + (c = 315 m, BR = 9 %) First estimate S/B  3 9 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  10. Monolithic Active Pixel Sensors (MAPS) Pitch 20 m Low material budget : Potentially d = 20 m Excellent single hit resolution :  3 m S/N = 20 - 40 R&D (IReS / LEPSI Strasbourg) : radiation hardness, readout speed Fallback solution : hybrid pixel detectors see talk by P. Riedler MIMOSA IV 10 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  11. K /  separation by time of flight • Separation power depends on: • flight path • time resolution 11 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  12. K- from D0 decay Decay + PID efficiency Time of flight : K- identifcation for D0 • Key issues for detector design : • rate capability • time resolution • scale 12 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  13. Detector R&D : Resistive Plate Chambers (RPC) Challenge : Counting rate Recent developments at LIP Coimbra : Time resolution ( 90 ps) essentially unchanged up to 25 kHz/cm2 13 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  14. Detector resolution 90 cm-14 strips-4 gaps 2 RPCs in gas box t < 80 ps Tail < 2% FOPI-RPC-R&D 90 cm-14 strips anode In house developments: 14 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  15. without cuts (incl. misident. pions) e+e- sum e+e- e+e- J/e+e- DDe+e-+X with cuts: pt(e+,e-) > 1 GeV/c, lab 25o, > 10o Feasibility study: J/  e+e- Study in CDR : S/B  10 after cuts Now available:  conversion in detector material dominating component, but mostly at low pt study ongoing 15 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  16. Feasibility study :   e+ e- Background from  conversion dominates After cut on e+e- vertex : SNR  3 in 1 M events study ongoing, tracking needed 16 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  17. Tracking in the STS TRACK RECONSTRUCTION XZ (bending) / YZ (non-bending) 17 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  18. Tracking in the STS RECO STATISTICS100 events Refprim efficiency : 98.36 | 46562 Refset efficiency : 94.85| 49250 Allset efficiency : 90.09 | 64860 Extra efficiency : 77.79 | 15610 Clone probability: 0.11| 74 Ghost probability : 5.18| 3358 Reco MC tracks/event: 648 Timing/event : 175 ms RECONSTRUCTION PROGRAM based on the Cellular Automaton Method (KIP Heidelberg) • RECONSTRUCTION • Fetch ROOT MC data • Copy to local arrays and sort • Create segments • Link segments • Create track candidates • Select tracks Reconstruction efficiency > 95 % 18 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  19. Magnet design Superconducting dipole magnet Field  1 T over 1 m Field calculatiop by TOSCA 19 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  20. Self triggered digitization: Dead time free Detector Front end ADC Each hit transported as Address/Timestap/Value Compensates builder/selector latency Buffer memory Use time correlation of hits to define events. Select and archive. Event builder and selector DAQ / Trigger Architecture clock Practically unlimited size Max. latency uncritical Avr. latency relevant Challenge : reconstruct 1.5 x 109 track/sec. data volume in 1st level trigger  50 Gbytes/sec. see talk by L. Schmitt 20 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  21. CBM participation in EU programmes • EU FP6 HP: • Joint Research Projects (approved): • Fast gaseous detectors • Advanced TOF Systems • Future DAQ and trigger systems • Network activities (approved): • CBMnet • INTAS: • Submitted proposals to the • INTAS-GSI joint call: • Silicon Strip Detectors • Electromagnetic calorimeter • Transition Radiation detectors • Straw tube tracker • Resistive Plate Chambers Proposals to EU FP6 (Design and Construction of new facilities) in preparation Call end of 2003 21 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

  22. The CBM R&D Collaboration : 35 institutions Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna SINP, Moscow State Univ. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ. , Kiev USA: LBNL Berkeley Hungaria: KFKI Budapest Eötvös Univ. Budapest Italy: INFN Catania INFN Frascati Korea: Korea Univ. Seoul Pusan Univ. Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Münster FZ Rossendorf FZ Jülich GSI Darmstadt 22 2. Workshop „Challenges and Opportunities“, GSI, October 2003 V. Friese

More Related