190 likes | 198 Views
Learn how to tune fuzzy systems using least-squares estimation. Explore the singleton and linear Takagi-Sugeno fuzzy models with practical examples. MATLAB programming exercises included.
E N D
Computacion Inteligente Tuning fuzzy systems: Least-Squares Estimation of Consequents
Contents • The singleton fuzzy model • Linear Takagi-Sugeno fuzzy systems • Example: Sinedata
The singleton fuzzy model • Let’s consider the Singleton fuzzy model: • where the normalized degree of fulfillment is,
The singleton fuzzy model • Expressing output y in vector form, • where we define
Linear Least Squares tuning • The form of the model to be tuned is in only a slightly different form from the standard linearmodel. • This means that Linear Least Squares can be used to train certain types of fuzzy systems Ones that can be parameterized so that they are“linear in the parameters”
Linear Takagi-Sugeno fuzzy systems • Let’s consider the linear Takagi-Sugeno system: • Denote,
Linear Takagi-Sugeno fuzzy model • Then, we can write where we define This means that Linear Least Squares can be used
Least-squares tuning • Let’s find the parameters using Least Squares • we can write
Least-squares tuning • Assume a set of N input-output data pairs • Denote
Least-squares tuning • Denote • Create the extended matrix • Further, denote
Least-squares tuning • Now vector y can be written in a matrix form, • Then the optimal batch least-squares solution which gives the minimal prediction error is
Least-squares tuning • Then the optimal batch least-squares solution which gives the minimal prediction error is • This is an optimal batch least-squares solution which gives the minimal prediction error, and as such is suitable for prediction models.
Least-squares tuning • At the same time, however, it may bias the estimates of the consequent parameters as parameters of local models. • If an accurate estimate of local model parameters is desired, a least-squares approach applied per rule may be used: Prove it!
Example: Sinedata • Ejemplo: Modelo TS lineal y sinedata • Dados el juego de pares de datos (x,y) en sinedata.mat, construir un sistema fuzzy Takagi-Sugeno y ajustar los parametros del consecuente por el metodo de los minimos cuadrados. • Solucion: VER sinedata_FIS.m.
Exercise • Ejercicio: Minimos cuadrados aplicado por regla • Dados el juego de pares de datos (x,y) en sinedata.mat, desarrollar un programa en MATLAB para construir un sistema fuzzy Takagi-Sugeno y ajustar los parametros del consecuente usando la expresion:
Sources • Kevin M. Passino, Stephen Yurkovich, Fuzzy Control. Addison Wesley Longman, Inc. 1998 • Robert Babuska. Course Fuzzy and Neural Control, 2001/2002