370 likes | 487 Views
Relativistic accretion disks: their dynamics and emission. Yuan, Ye-Fei (袁业飞) Department of Astronomy, USTC (2011.04.26). Collaborators: Cao, X.; Shen, Z.Q. (SHAO); Li, Guangxing; Huang, L. (USTC) Ref.: ApJ, 699, 722-731(2009), ApJ, 715, 623-635(2010). Outline.
E N D
Relativistic accretion disks:their dynamics and emission Yuan, Ye-Fei(袁业飞) Department of Astronomy, USTC (2011.04.26) Collaborators: Cao, X.; Shen, Z.Q. (SHAO); Li, Guangxing; Huang, L. (USTC) Ref.: ApJ, 699, 722-731(2009), ApJ, 715, 623-635(2010)
Outline • Relativistic Accretion Disks • Ray Tracing Method • Relativistic SSD/Slim Disks • Images of Sgr A*:Relativistic ADAF • Main Conclusions
Relativistic Accretion Model Kerr Metric:
Reference Frames: LNRF, CRF, LRF CRF LRF LNRF(ZMAO) Four velocity of the fluid: uμ(Ω,V)
Basic Equations: ADAF SSD/Slim
Ray Tracing Method . β Integral of motion of photons: (α,β) α Two impact parameters:
Equation of photon trajectroy: where, Analytic solution of photon’s trajectory:
Relativistic SSD/Slim: One temperature disk • MCD spectra • Influenced by BH spin • Prominent in XRBs
Why XRB? • Mass Estimation • Inclination Angle (Superluminal Motion) • Bright, Easy to Observe
What can MCD tell us about Spin? • Effect of Spin • Degeneracy Between Spin and Inclination Angle Li.L.X .et. al 2006, Shafee. R .et.al 2006
Our motivations • Study the spectra from slim accretion disks • Study the influence of spin and Inclination angle on the emergent spectra • Quantify the error of Standard Accretion Disk model in estimating spin
Physical Effects: Heat Advection Li, Yuan, Cao (2010)
Physical Effects: Disk Thickness • Left: No Thickness, Right: With Thickness, M_dot=2, a=0.98, 600
Global solution of the disk Li, Yuan, Cao (2010)
Emergent Spectra Li, Yuan, Cao (2010)
Implications For Spin Estimation Li, Yuan, Cao (2010)
Sgr A* --- The Black Hole Candidate in Milky Way Galaxy Mass : 4 x 106 M⊙ D : 8 kpc Angular size of horizon : ~ 20 μas From: Lei Huang
UN beam 1.11 mas x 0.32 mas @ 9o Super-resolution 0.02 mas The first image of Sgr A* @3.5mm • unresolved (no extended structure) → single component • zero closure phases → symmetrical structure • (~E-W) elongated emission → consistent with λ≥ 7mm data Shen et al. 2005 Nature From Zhiqiang Shen
@7mm @3.5mm @1.3mm Yuan, Shen, Huang, 2006, ApJL
θobs=90 θobs=45 θobs=0 @1.3mm @3.5mm Huang, Cai, Shen, Yuan, 2008, MNRAS
Global structure of ADAF Yuan, Cao, Huang, Shen (2009)
Images of Sgr A* θobs=0 Yuan, Cao, Huang, Shen (2009)
Images @ 7 mm θobs=90, 45, 0 a=-9.998 -0.5 0 0.5 0.998 Yuan, Cao, Huang, Shen (2010 )
Images @ 3.5 mm θobs=90, 45, 0 a=-9.998 -0.5 0 0.5 0.998 Yuan, Cao, Huang, Shen (2009)
Images @ 1.3 mm θobs=90, 45, 0 a=-9.998 -0.5 0 0.5 0.998 Yuan, Cao, Huang, Shen (2009)
Main conclusions • Effects of BH spin: • For a>0, the larger the spin, the smaller the shadow of BH, and the brighter the inner part of the disk. • For a<0, there is no significant difference. • Effects of the viewing angles: • The larger the viewing angles, the smaller the BH shadow which is even obscured at edge on case, and the brighter the inner part of the disk. • Effects of the observing wavelength: • The shorter the observing wavelength, the smaller of the images. • Application to SgrA*: fast spin or large inclination?