310 likes | 850 Views
Principles of Biomechanical Analysis. PSE4U Mr. MacMillan. Review of Biomechanics. The Laws of Motion 1 st – Law of Inertia 2 nd – Law of Acceleration 3 rd – Law of Reaction. Types of Motion Linear Movement in a particular direction Sprinter accelerating down a track Rotational
E N D
Principles of Biomechanical Analysis PSE4U Mr. MacMillan
Review of Biomechanics • The Laws of Motion • 1st – Law of Inertia • 2nd – Law of Acceleration • 3rd – Law of Reaction
Types of Motion • Linear • Movement in a particular direction • Sprinter accelerating down a track • Rotational • Movement about an axis • What are the three axis’? • Longitudinal, anterio-posterior, horizontal • Ice skater spinning or a gymnastic somersault
Linear Motion • Acceleration in a straight line • Force as a vector • Force as a pull or push of a certain magnitude in a certain direction
Rotational Motion • Is comparable to linear motion but the object spins around an axis • Acceleration is angular • Torque is measured rather than force • Moment of inertia • Resistance to rotation • Larger the moment of inertia, the larger the moment of force needed to maintain the same angular acceleration
Ice Skating The ice-skater begins to spin with arms spread apart then suddenly brings them closer to the body. The end result of tightening up is that the skater’s spin (angular velocity) increases, seemingly miraculously
Gymnastics Following a series of rapid somersaults in a tight position, the gymnast does a forward flip with the body positioned more or less straight. By opening up, the gymnast increases the moment of inertia, thereby resulting in a decrease in angular velocity
Diving After leaving the high diving board, the diver curls tightly and then opens up just before entering the water. By opening up before entry, the diver increases the moment of inertia, thereby slowing down the angular velocity and hopefully ensuring a smooth and safe entry.
The Lever Systems • Class I Lever • Class II Lever • Class III Lever
The fulcrum (axis) is located between the force (effort) and the resistance (load) Class I Lever (e.g. teeter-totter)
The resistance is between the fulcrum and the resistance Class II Lever (e.g. wheelbarrow)
The force is between the fulcrum and the resistance Class III Lever (e.g. snow shovel)
Seven Principles of Biomechanical Analysis • Stability • Maximum force • Maximum velocity • Impulse • Reaction • Torque • Angular momentum
Principle 1: • The lower the centre of mass, the larger the base of support, the closer the centre of mass to the base of support and the greater the mass, the more stability increases.
Principle 2: • The production of maximum force requires the use of all possible joint movements that contribute to the task’s objective
Principle 3: • The production of maximum velocity requires the use of joints in order – from largest to smallest
Principle 4: • The greater the applied impulse, the greater the increase in velocity
Principle 5: • Movement usually occurs in the direction opposite that of the applied force
Principle 6: • Angular motion is produced by application of force acting at some distance from an axis, that is, by torque
Principle 7: • Angular momentum is constant when an athlete or object is free in the air.
Free Body Diagrams • Free body diagrams, are a tool for solving problems with multiple forces acting on a single body. • The purpose of a free body diagram is to reduce the complexity of situation for easy analysis. The diagram is used as a starting point to develop a mathematical model of the forces acting on an object. • Below is a picture of a flying jet.
Force = m a • M = mass • A = acceleration • Acceleration • = (v – u) / t • V = final velocity • U = starting velocity • T = time • Momentum = m v • M = mass • V = velocity • Impulse (N/s) • = Ft = m Δv • M = mass • Δ v = average velocity • Change in Momentum • = m (V2 – v1) • M = mass • V2 = final velocity • V1 = initial velocity Biomechanical Formulae
Your Task! • Read pages 230 – 234 • Answer Questions on Handout on course website