70 likes | 239 Views
5.2 Use Perpendicular Bisectors. 1.) Define perpendicular bisectors and equidistant. 2.) Use the Perpendicular Bisector Theorem and its converse to find missing side lengths. 5.2 Use Perpendicular Besectors. segment, ray, or line.
E N D
5.2 Use Perpendicular Bisectors 1.) Define perpendicular bisectors and equidistant. 2.) Use the Perpendicular Bisector Theorem and its converse to find missing side lengths.
5.2 Use Perpendicular Besectors segment, ray, or line perpendicular bisector - a ___________________ that is perpendicular to a segment at its ______________ midpoint
5.2 Use Perpendicular Besectors Example 1: BD is the perpendicular bisector of AC. Find AD
5.2 Use Perpendicular Besectors Example 2: In the diagram, WX is the perpendicular bisector of YZ. (a) What segment lengths in the diagram are equal? (b) Is V on WX?
5.2 Use Perpendicular Besectors Example 3: In the diagram, JK is the perpendicular bisector of NL. (a) Find NK. (b) Explain why M is on JK.
5.2 Use Perpendicular Besectors Example 4: With a partner: A B AC is the bis of BD. Find x and AD. JK is the bis of GH. Which segments are congruent? Find GH. ⊥ ⊥